Рисунок 36 Интерфейс Deepl
Переводчик Промт (translate.ru) обладает собственным пониманием текста, уникальность повышается, но смысл теряется, поэтому предстоит много правки, рис. 37.
Рисунок 37 Переводчик Промт (translate.ru)
С образовательной точки зрения, данный подход к перефразированию несет обучающий потенциал, т.к. при компиляции текстов из учебников, студент читает правильный текст, а при прочтении текста после двойного перевода и GPT генерации, приходится вычитывать текст, вдумываться в смысл и исправлять неточности. Тем не менее, это значительно быстрей чем перефразировать текст полностью руками.
Почему тексты, перефразированные указанным способом, не определяются как генеративные:
GPT и программа-переводчик это совершенно разные модели, Антиплагиат детектирует GPT-подобные модели;
текст, после перефразирования содержит шинглы, состоящие из 2 слов, их последовательности похожи на последовательности текста источника, при генерации в GPT, согласно примитивным запросам, таких последовательностей достаточно мало, другими словами, Антиплагиат не понимает откуда копипаста текста.
Глубокое академическое перефразирование КонтрПлагиат
Глубокий рерайт, рассмотренный выше выполнялся с применением переводчика Google и GPT, пришлось применить ручной труд для исправления ошибок и достижения необходимого показателя отличия текстов Ш2.
Заметно упрощает процесс глубокого перефразирования академическая нейросеть КонтрПлагиат. Перефразирование осуществляется следующим образом:
Шаг 1 перегенерация текста, с одновременной сверкой по методу Ш2. В процессе перегенерации используется модель не известная GPT-подобным системам и антиплагиат РУ, в частности, в этом заключено несомненное преимущество нейросети КонтрПлагиат.
На рис 38 приведены результаты опроса, где мы попросили наших читателей найти текст, перефразированный с помощью КонтрПлагиат, результаты опроса показательны, текст, после рерайта КонтрПлагиат человеческим глазом идентифицирован не был.
Рисунок 38 Опрос, проведенный нами ВК
Шаг 2 исправление ошибок перегенерации, с одновременной сверкой по методу Ш2. Исправление ошибок не должно возвращать Ш2, как в тексте источнике.
В результате перефразирования получается текст, который соответствует критериям перефразирования, показатель Ш2 больше 80%, рис. 39.
Рисунок 39 Сверка текста источника (правое окно) с перефразированным текстом (левое окно) по методу шинглов, состоящим их 2 слов (Ш2), отличие текстов 92%
Пример полученного, рис. 39 текста
Анализ особенностей менеджмента и финансирования современных российских энергетических компаний и предприятий является важным аспектом диссертационного исследования, поскольку определяет не только уровень новационности, адаптивности, рыночной устойчивости, энергетической защищенности и безопасности, энерго-экономической эффективности самого предприятия, но и функционирования обслуживаемого им сектора экономики (в основном промышленности). Использование энергоносителей при производстве и поставке товаров и услуг является важным фактором, определяющим добавленную стоимость товаров и услуг. Переход к более экологичным и экономически эффективным методам промышленного производства возможно начать с анализа и изучения динамики изменения системы энергоснабжения. Эти выводы основаны на результатах большого числа исследований, проведенных в России и за рубежом по различным проблемам развития промышленности [9, 10, 12, 14, 16, 17, 25, 26].
Так, ученый Н. Г. Борисюк считает, что ресурсные возможности и потенциал целого ряда энергетических предприятий и всей целостности ТЭК (топливно-энергетического комплекса) в целом является основой устойчивого развития и выступает драйвером реструктуризации отечественной экономики. По его данным, на долю отраслей ТЭК в России приходится около 80% промышленного воспроизводства [31,C.73], а 16% промышленно-производственной рабочей силы страны занято на предприятиях и в субъектах экономической деятельности, относимых к ТЭК [34,C.73]. Одним из направлений изменений и реструктуризации отечественной экономики, рассматриваемых данным исследователем, является кластеризация, в которой предприятия топливной энергетики выделяются в качестве центра кластеров.
Сегодня, когда все большее значение приобретает стратегия перехода к низко углеродной (зеленой) экономике и более устойчивым моделям производства и потребления энергии, необходимо анализировать передовой опыт повышения энергоэффективности в различных отраслях и изучать инвестиционные и технологические возможности в ТЭК [60, C. 34]. Отметим, что в то же время энергетический рынок формируется под воздействием спроса и предложения на все виды энергоносителей, включая традиционные носители энергии углеводороды и возобновляемые источники энергии. Сегодня структура потребительских предпочтений и реальный спрос на энергию претерпевают значительные изменения. В результате энергетическим компаниям приходится искать новые организационные и технологические решения на всех этапах технологических процессов и производственных цепочек от добычи ископаемых до распределения энергетических ресурсов между потребителями.
Применение современных теорий и практик управления позволяет эффективно организовывать и координировать ресурсы субъектов отрасли топливной энергетики, энергетических компаний для обеспечения их устойчивого и динамичного развития. Прежде чем внедрять новые технологии, необходимо приобрести нематериальные ресурсы, такие как опыт и знания, характерные для отечественного ТЭК. Для того чтобы создать необходимую базу для этих ресурсов, необходимо развивать человеческие ресурсы энергетических подразделений и компаний. Специфика развития ТЭК требует определения его структуры, субъектного состава участников и четкое выделение их места в общей организационной структуре.
Очевидными достоинствами КонтрПлагиат выступают:
целостность процесса, все происходит в «одном окне» или в «одном файле». Файл загружается в интерфейс, выгружается в формате. docx, следовательно сохраняется оформление документов и уменьшается объем ручных манипуляций;
скорость обработки 1 млн. знаков в час, что заметно превышает скорость генерации текста в GPT;
качество текста выше, чем у всех известных моделей, показатель Ш2 превосходит показатели всех известных моделей, рис. 40.
Рисунок 40 Сравнительная характеристика нейросетей, 2023 г.
Таким образом, процесс повышения уникальности текста прост, перевод с русского на иностранный язык и обратно; GPT-перегенерация; повторение операции перевода с русского на иностранный язык и обратно; правка не изменённых шинглов; вычитывание и правка неточностей.
Как убрать статус «Внимание, документ подозрительный: в документе присутствует сгенерированный текст»
Что делать при наличии в Антиплагиат уведомления о генеративном тексте? Есть два подхода, рекомендуется применение обоих, в любой последовательности.
Текст может генерироваться на основании примитивного запроса, это когда всю мощь ИИ используют как поисковик, например, «перечисли методы анализа конкурентоспособности, дай характеристику каждому методу». В результате сложной перегенерации задаются условия генерации и предоставляется прототип текста, на основании которого GPT пишет новый текст.