Все это можно сделать со столбцами. И математическая статистика как раз пытается ответить на вопросы выше. Итак, математическая статистика:
1. дает математическое описание набора данных (столбца);
2. определяет вид распределения (для определения вероятности новых значений и не только);
3. дает описание того, как взаимодействуют два и более набора данных (столбцы).
Глядя на рисунок выше надо также учитывать, что, как правило, набор данных далеко не отражает всех данных. Например, в данных Goodreads приведена только небольшая выборка из всех книг. Это ставит перед математической статистикой дополнительные задачи.
В качестве учебника по математической статистике я рекомендую учебник Гмурмана «Теория вероятностей и математическая статистика» (далее Гмурман). Вот как этот автор описывает, чем занимается матстат (стр. 187 Гмурман):
1. «оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого неизвестен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.»;
2. «проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого неизвестен».
Некоторые важные концепции математической статистики
«Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности» (Гмурман, стр. 76).
Математическое ожидание примерно равно среднему значению. Причем «математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины» (Гмурман, стр. 78). Поэтому чем больше данных, тем лучше.
Понятие «центрированная величина» возникает из-за того, что такая величина получается как «разность между случайной величиной и ее математическим ожиданием» (Гмурман, стр. 87). Само же математическое ожидание принимается за центр распределения набора данных.
«Дисперсией (рассениянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания» (Гмурман, стр. 88).
Вот формула:
В этой записи надо учитывать, что прописная X означает весь набор данных, например 3, 8, 19 и т. д. То есть формулу надо читать так, что из каждого из единичных значений X производится вычитание. Например, вычитаем матожидание из 3, из 8, из 19 и т. д.
Подробнее про компоненты дисперсии можно посмотреть в учебнике для инженеров [7.4.4. What are variance components?] (https://www.itl.nist.gov/div898/handbook/prc/section4/)
Совет
«В тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию. Например, если X выражается в линейных метрах, то среднее квадратическое отклонение будет также выражаться в линейных метрах, а дисперсия в квадратных метрах» (Гмурман, стр. 94).
Теперь разберу концепцию начальных и центральных моментов, очень важную для математической статистики. Для этого возьму произвольный набор данных, в котором для каждого значения известна вероятность.
Вот как считается математическое ожидание:
Еще раз, важно запомнить, что в записи M (X) вот это X означает случайную величину, скажем измерения линейкой. Отдельное значение из этой случайной величины (верхняя строка в таблице выше) обозначается как x. Когда же есть запись с X, то имеются ввиду все значения x.
Итак, теперь возведу в квадрат случайную величину.
Вероятность не изменилась. Это можно понять так. Возведением в квадрат изменяется масштаб, но не вероятность. Каким будет математическое ожидание?
Какой вывод я могу сделать? Второе математическое ожидание гораздо больше первого. Почему? Потому что в первом случае я умножал вероятность 0,01 на 100, а во втором ту же вероятность 0,01 я умножил уже на 10000. Это позволило «лучше учесть влияние на математическое ожидание того возможного значения, которое велико и имеет малую вероятность» (Гмурман, 98). В зависимости от количества подобных величин, того, насколько они «маленькие», может потребоваться возведение не только в квадрат, но и в более высокие степени.
Начальным моментом порядка k называют математическое ожидание случайной величины, возведенной в степень (k, это может быть и степень k=1). Центральным моментом порядка k называют математическое ожидание степени разности между случайной величиной и математическим ожиданием случайной величины.
[Не так строго понять это можно следующим образом. Сначала я нахожу среднее значение набора данных (это будет математическим ожиданием). Затем я вычитаю из каждого значения набора данных это среднее значение. У меня получится новый набор данных. Теперь я могу найти среднее этого нового набора данных (это также будет математическим ожиданием, но для нового набора данных).]
Применение закона больших чисел разъясняется в главе 9 Гмурмана. Здесь я не буду останавливаться на этом подробнее.
Выборкой «называют совокупность случайно отобранных объектов» (Гмурман, стр. 188). Выборка осуществляется по специальным правилам. Подробнее об этом можно узнать здесь (https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm), а также в [7.2.4.2. Sample sizes required] (https://www.itl.nist.gov/div898/handbook/prc/section2/prc242.htm).
Генеральной совокупностью «называют совокупность объектов, из которых производится выборка» (там же).
В теории вероятностей
«под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике соответствие между наблюдаемыми вариантами и их частотами или относительными частотами» (Гмурман, стр. 192).
В случае, который разбираю я на данных Goodreads, имеющиеся у меня данные это выборка, по которой я хочу оценить генеральную совокупность все книги на сайте Goodreads.
Вот как это работает.
«Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Естественно возникает задача оценки параметров, которыми определяется это распределение. Например, если наперед известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) математическое ожидание и среднее квадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение; если же есть основания считать, что признак имеет, например, распределение Пуассона, то необходимо оценить параметр лямбда, которым это распределение определяется» (Гмурман, стр. 197).
Например, генеральная совокупность все книги на Goodreads. Параметр, который нас интересует, это количество страниц. Количество страниц в каждой книге Goodreads это и есть количественный признак генеральной совокупности.
Итак, есть оцениваемые параметры, а есть статистические оценки таких параметров. Такие оценки должны соответствовать определенным требованиям. Буду делать выборки из генеральной совокупности книг. Для каждой выборки оценю параметр, например среднее значение страниц в книге. Каждая такая выборка даст свое значение, совокупность таких значений и будет набором данных, у которого также может быть математическое ожидание (среднее). Отсюда появляется понятие несмещенной оценки.