Он написал множество книг по всему спектру математических наук, общей геометрии, включая пропорции и такие запутанные вещи, как квадратная иррациональность или стереометрия. Евклид был современником философа Платона, который время от времени еще и политикой интересовался. Так вот, Платон должен был садиться у ног Евклида и внимательно прислушиваться к его рассказам о геометрических изысканиях. Не проще ли было бы объяснить это тем, что Платон восхищался идеями гения математики Евклида и с пользой для дела применял его познания в геометрии, когда в роли политика говорил о своих построениях: Итак, что же знал сам Платон?
В диалоге «Государство» Платон сообщает своему собеседнику об учении, именуемом геометрией. В другом диалоге («Менон, или О добродетели») он берет на роль собеседника раба и демонстрирует абсолютное невежество бедняги в геометрии. Но наиболее полно этот вопрос освещается в диалоге «Тимей», персонажи которого рассуждают о проблеме пропорций, кубических и квадратных числах, а также о том, что мы называем золотым сечением. Следующая цитата может показаться людям вроде меня, никогда не смаковавшим прелесть высшей математики, совершенно непонятной. Но слова Платона лишний раз подтверждают, на каком высоком уровне об этом спорили 2500 лет тому назад [51]:
«…ибо, когда из трех чисел — как кубических, так и квадратных — при любом среднем числе первое так относится к среднему, как среднее к последнему, и, соответственно, последнее к среднему, как среднее к первому, тогда при перемещении средних чисел на первое и последнее место, а последнего и первого, напротив, на средние места выяснится, что отношение необходимо остается прежним, а коль скоро это так, значит, все эти числа образуют между собой единство.
При этом, если бы телу Вселенной надлежало стать простой плоскостью без глубины, было бы достаточно одного среднего члена для сопряжения его самого с крайними…»
И так далее, пока «головушка» не расколется. После чтения следующего предложения я отказался следовать за математическими рассуждениями Платона:
«…Благодаря этим скрепам возникли новые промежутки, по 3/2, 4/3 и 9/8, внутри прежних промежутков. Тогда он заполнил все промежутки по 4/3 промежутками по 9/8, оставляя от каждого промежутка частицу такой протяженности, чтобы числа, разделенные этими оставшимися промежутками, всякий раз относились друг к другу как 256 к 243».
О чем, собственно говоря, идет речь в этом сложнейшем для понимания диалоге Платона? Ответ гласит: о сотворении Земли. После того как я на несколько недель с головой «ушел» в Платона, я перестал понимать, почему Галилео Галилей со своим «Посланием планет» стал причиной такой суматохи и почему его в XVII веке хотела сжить со света святая инквизиция. Все, чему учил Галилей, можно было прочитать у Платона: о том, что Земля имеет форму шара и вращается вокруг Солнца. То же самое, — включая закон силы притяжения, — содержится и в древнеиндийских текстах. Древние знали гораздо больше, чем позволено знать нашим гимназистам сейчас. Гай Плиний Второй (61-ИЗ гг. после Р.Х.