Работа посвящена развитию технологий сетей Next Generation Network (NGN) и применения их для построения региональных распределенных сетей.
Диссертация защищена в Межотраслевом центре эргономических исследований и разработок в военной технике (Тверское отделение (40-я лаборатория) НИИ авиационного оборудования) филиала Центрального научно-исследовательского института экономики и конверсии (ЦНИЭК).
В том же году в компании «МТС» внедрена, разработанная нами система централизованного хранения, обработки и защиты конфиденциальной информации, расположенной в распределенных центрах обработки информации компании, на удаленных автоматизированных рабочих местах и терминалах «Atlansys Atlansys Enterprise Security System» (https://atlansys.tech/atlansysess/). Система была установлена на 12 000 рабочих местах.2
2021 год
1. Написана Программа центра разработки и внедрения сильного и прикладного искусственного интеллекта МГТУ им. Н. Э. Баумана по теме: «Создание платформы машинного обучения для автоматизации интеллектуальных сетей передачи, обработки и хранения гетерогенных данных на основе технологий доверенного искусственного интеллекта». По направлению: «Межотраслевые технологии искусственного интеллекта и искусственный интеллект для иных приоритетных отраслей экономики и социальной сферы».
Основная цель программы Центра разработки и внедрения сильного и прикладного искусственного интеллекта МГТУ им. Н. Э. Баумана создание специализированного программного комплекса платформы машинного обучения для автоматизации обеспечения бесперебойной работы и улучшения качества услуг интеллектуальных сетей передачи, обработки и хранения гетерогенных данных (включая поддержку работы с широкополосными сетями передачи данных, сетями Wi-Fi, сети IoT и д.р.) на основе технологий доверенного искусственного интеллекта, а также:
работу в распределенных облачных инфраструктурах для решения широкого круга межотраслевых задач индустриальных партнеров;
создание и тестирование новых алгоритмов обучения нейронных сетей, которые могут применяться в широком спектре кросс-отраслевых прикладных решений;
сделать существенных шаг для последующих исследованиях в направлении Сильного искусственного интеллекта.
Очень важным аспектом работы данной платформы является реализация задачи поддержания наиболее эффективной нагрузки на сеть по критерию производительности в условиях интенсивной маршрутизации обмена сообщениями. На основании исходных данных платформа может моделировать и прогнозировать поведение сети, информируя оператора о причинах сбоев или снижения эффективности работы сети, или помогая делать прогнозы по улучшению обслуживания сети, а также решать задачи по ее оптимизации.
Созданная «умная» платформа сможет также применяться крупными производственными компаниями при переводе производственных и технологических процессов на уровень «Индустрия 4.0» и промышленного Интернета вещей, для решения задач автоматизации обмена данными о процессах и автоматической реконфигурации без непосредственного участия человека.
Применение машинного обучения и искусственного интеллекта для решения подобных задач автоматизации и оптимизации сетевых параметров интеллектуальных сетей в ближайшем будущем позволит нам перейти к созданию новых сетевых систем сетей будущего, которые способны автоматически решать сложные оптимизационные задачи и строить самостоятельно алгоритмы построения и развития сетей, что немаловажно, они смогут выполнять оптимизационные задачи быстрее и качественнее человека, что в будущем будет возможно с появлением сильного искусственного, который позволит создавать самоорганизующиеся сети передачи данных, объединяющие в себе сотовые сети, широкополосные сети, сети Wi-Fi, сети Интернета вещей, сети промышленного Интернета и другие сети специального назначения,3,4,5,6,7,8,9,10.
Совместно компанией «ЭР-Телеком Холдинг» индустриальным партнером Центра разработано Техническое задание, которое позволит решить следующие основные задачи на базе создаваемой платформы:
1. Разработка подсистемы улучшения эффективной нагрузки и контроля качества эксплуатации интеллектуальной сети (инфокоммуникационной сети и сервисов).
2. Разработка подсистемы предиктивной аналитики для поддержки системы-принятия решений по эксплуатации сети.
3. Разработка подсистемы сбора и глубокого анализа данных сети IoT, с целью формирования специализированных баз данных, для дальнейшего создания, внедрения и предоставления платных сервисов клиентам (заказчикам, потребителям услуг).
Работа по написанию Программы центра разработки и внедрения сильного и прикладного искусственного интеллекта МГТУ им. Н. Э. Баумана выполнена в рамках конкурса проведенного в 2021 году Аналитическим Центром при Правительстве России по отбору получателей поддержки исследовательских центров в сфере искусственного интеллекта, в том числе в области «сильного» искусственного интеллекта, систем доверенного искусственного интеллекта и этических аспектов применения искусственного интеллекта. Программа высоко оценена независимыми экспертами.
Об этом проекте и его результатах я подробно рассказываю в книге «Как создать Центр искусственного интеллекта за 100 дней».11
2. Подготовлен Отчет о научно-исследовательской работе МГТУ им. Н. Э. Баумана за 2021 год по теме: «Разработка методологии построения интеллектуальных сетей, определение их структуры и архитектуры, параметров функционирования с целью повышения производительности работы системы и пропускной способности каналов передачи данных с учетом возможности использования технологий машинного обучения и искусственного интеллекта». Работа выполнена в рамках конкурса «Приоритет-2030»: «Искусственный интеллект как сервис», проведённого Министерством науки и высшего образования Российской Федерации.
2023 год
Разработана электронная универсальная система машинного обучения «Atlansys EUS» (Electronic Universal System, EUS).
Название платформы выбрано не случайно и является отсылкой к 80-м и 90-м годам двадцатого века, к эпохе зарождения и развития компьютерных технологий, автоматизированных и экспертных систем.
Платформа «Atlansys EUS» создана для разработчиков и пользователей сервисов искусственного интеллекта. Она предоставляет цифровые сервисы, необходимые для разработки, развертывания и запуска приложений, использующих технологии машинного обучения и искусственного интеллекта в распределенных облачных средах для решения научных и бизнес-задач заказчиков.
Концепция «Atlansys EUS» это автоматизированная реализация процесса «Data Mining -> Data Science -> Data Analysis -> Artificial Intelligence -> Machine Learning -> Value» через цифровые сервисы.
Как вы можете видеть, научно-исследовательская работа, представленная в первом томе, прошла красной нитью через многие из моих проектов, выполненных за последние двадцать лет в области информационных технологий. Я надеюсь она сможет быть полезной и вам в вашей работе.
Эта книга, как и мои многие другие, является исключительно личным опытом и проектом автора, а также абсолютно свободным к распространению документом. Вы можете использовать эту книгу и представленную в ней информацию по-своему усмотрению, но ссылка на нее обязательна.