Всего за 549 руб. Купить полную версию
Наверное, ни один из ровесников ХХ века, даже самый прозорливый, вначале не предполагал, что, перешагнув рубеж XIX и XX веков, мир начал отсчет не просто нового столетия, а новой эры.
Массовое и шоковое прозрение наступило много позже, в августе 1945 года, когда в результате американского применения нового всепожирающего оружия два японских городов Хиросима и Нагасаки стали пепелищами. Прошло всего 90 дней после 9 мая, отмеченного знаком Великой Победы над фашизмом, и вновь над миром нависла тень безумия, теперь ядерного кошмара. Отныне все, что связано с атомной энергией, человеческая память хранит там, где таятся эти кошмары. Но справедливо ли это? И не связано ли неотвратимо и накрепко будущее человечества с этим джинном?
Да, лик прогресса, который принес в мир энергию атома и предстал в 1945 году в виде смерча атомного гриба, оказался устрашающе безобразен. Научно-технический прогресс дал продукт не обнадеживающий, а пугающий, непредсказуемый. Кто же виноват в этом? Может быть, те люди, которые дали человечеству этот продукт? И недостойные ли они в этом случае участи Прометея?
Если так подходить к первопричинам ядерного миробытия, то придется призвать к ответу и судить человеческий разум. Именно он, движимый извечным стремлением раскрыть, понять, объяснить очередную загадку природы (благодаря этому род людской и развивается) привел к поворотному пункту всю мировую историю. И на переднем крае этого прорыва более высокой ступени постижения всего сущего находились ученые-атомщики. Первоначально они совершенно не предполагали, что энергия ядра может быть использована в иных, кроме созидательных, целей. Физики занимались своим делом, углубляя и расширяя представление людей об окружающем их мире, открывая новые ранее невиданные возможности для процветания цивилизации.
Эта благородная цель, характерная, разумеется, не только для физиков ХХ века, но и для науки в целом и во все времена, не исчерпывает, однако, всего комплекса побудительных мотивов деятельности ученых. Как и в любом другом виде творчества, в науке властвуют особые ценности. Они способны дать духовное удовлетворение тем, кто ею занимается. Как справедливо замечал Чарльз Сноу, «наукой можно наслаждаться».
Основоположник атомных исследований Резерфорд был убежден, что достижения ядерной физики вовсе не связаны с поисками новых источников энергии или стремлением получить дорогие, редкие элементы. Причина лежит глубже. Она обусловлена захватывающей увлекательностью проникновения в одну из сокровеннейших тайн природы.
Хорошо известно высказывание одного из выдающихся физиков Э. Ферми, относящееся к тому времени, когда было уже понятно, что такое ядерное оружие: «Прежде всего, это хорошая физика». И этим все сказано!
Сам факт вступления человечества в новую эру, когда ядерное присутствие стало реальным элементом его жизни, источником как новых достижений, так и новых колоссальных трудностей (включая вопрос выживания), ученые-историки науки датируют по-разному. Так, когда же эта эра наступила? Каскад блестящих фундаментальных открытий уже на рубеже двух веков и в первое десятилетие следующего ХХ столетия обеспечил прорыв в новое миросуществование. В этот период теоретическая физика заняла лидирующие позиции в естественнонаучном знании. Она их удерживала и укрепляла в течение довольно длительного этапа новейшей истории науки.
Многие открытия начального этапа развития физики ХХ века носили по-настоящему эпохальный характер. Вот только некоторые из них: открытие Рентгеном Х-лучей, названных его именем (первая среди физиков Нобелевская премия в 1901 году), открытие полония и радия и естественной радиоактивности урана Беккерелем, Кюри, Склодовской-Кюри (Нобелевская премия в 1903 году), открытие первой элементарной частицы, входящей в состав атома, электрона Томпсоном (Нобелевская премия в 1906 году), открытие Гессом космических лучей (Нобелевская премия в 1936 году), создание общей и специальной теории относительности и формулировка закона взаимосвязи массы и энергии А. Эйнштейном, что легло в основу всей ядерной физики (Нобелевская премия в 1921 году), создание квантовой модели атома Нильсом Бором, открывшим новый этап в развитии атомной теории (Нобелевская премия, в 1900 году).
Не происходило года без новых физических «откровений», и физика очень быстро стала одной из увлекательнейших областей научного поиска. Она как магнит притягивала ученых-исследователей. В известной мере это было полной неожиданностью, так как в конце XIX века прочно утвердилось представление о том, что физика практически «закончена». Получилось иначе под давлением нового знания это мнение рассыпалось в прах. Классическая физическая теория, занимавшаяся исключительно изучением тех явлений, которые происходят в окружающем человека макромире, оказалась беспомощной в объяснении результатов, полученных в ходе исследования микромира атомов и молекул. Началось накопление нового экспериментального материала, анализ которого ложился в основу постепенного оформления принципов современного физического мировоззрения.
Первая модель атома была создана Томпсоном в 1903 году. В история науки она получила название «пудинг с изюмом». Атом представлялся сферой, равномерно заряженной положительным электричеством, в которую «воткнуты» отрицательно заряженные электроны. При равенстве отрицательных и положительных зарядов атом оказывался нейтральным. В 1911 году было открыто атомное ядро и создана планетарная модель атома модель Резерфорда. Термин ядро стал одним из основных понятий современной физики. 1914 годбыл ознаменован еще одним важным открытием. Резерфорд разгадал тайну положительного заряда ядра атома, открыв протон. Теперь стали известны две элементарные частицы, входящие в состав атома электрон и протон. Через 5 лет Резерфорд достиг апогея своей научной славы, осуществив первую искусственную ядерную реакцию азот был превращен в кислород. В течение нескольких последующих лет он добился экспериментального доказательства возможности превращения еще семнадцати других элементов. Основы современной физики ядра приобретали все более ясные очертания.
В 1920 году великий английский физик предсказал существование электрической нейтральной тяжелой микрочастицы «нулевого элемента», что нашло свое экспериментальные подтверждения чуть больше 10 лет спустя.
Эти 10 лет двадцатые годы ХХ столетия были противоречивым периодом развития атомной теории. С одной стороны, царила атмосфера беспрецедентного творческого оживления, физики бурно дискутировали, обсуждая новые теории и последние экспериментальной данные.
С другой стороны, лавинообразный характер открытий кратковременно сменился некоторым затишьем. Но это была тишина перед бурей. Атака на ядро продолжалась, совершенствовались и ее «орудия». Длительное время главным из них были альфа-частицы, которыми ученые бомбардировали ядро. Эти частицы имеют одинаковый с ядром заряд положительный, поэтому для их взаимодействия с ядром необходимо преодолеть взаимное отталкивание, что требует большой энергии, для чего создавались дорогостоящие специальные устройства (ускорители). Исследовательской мысли и эксперименту нужен был более мощный таран. До поры до времени он был неизвестен, но уже предсказан Резерфордом. Поиском этого элемента занимались многие физики. Успех «достался» английскому ученому, работавшему в Кавендишской лаборатории Кембриджского университета, ставший альма-матер для многих открытий и многих звёзд первой величины физического научного мира. В 1932 году Чедвик открыл нейтрон и через три года это достижение было отмечено Нобелевской премией.