Понятно, что у объектов всего этого нет: ни частоты, ни длины волны, ни интерференции две табуретки не начнут складываться, чтобы при встрече друг с другом образовать табуретку вдвое большего размера.
Хитрый, как сто чертей, Томас Юнг пропустил луч света через две расположенные рядом прорези в светонепроницаемой шторке, и на экране за шторкой образовалась чудесная интерференционная картина.
Если бы свет был частицами, картина на экране была такой.
Рис. 3
А она вот такая. Волны интерферируют, образуя интерференционную картинку.
Рис. 4
Все! Баста! Разговор окончен! Таким вот простым способом была неопровержимо доказана волновая природа света. Расходимся
Позже выяснилось, что свет это электромагнитная волна. И теперь в каждом школьном классе висит чудесная цветная шкала электромагнитных колебаний, начиная от радиоволн и заканчивая жестким гамма-излучением. И примерно в середине этой шкалы есть маленький участок оптического диапазона. Тот самый свет.
Опыт Юнга был поставлен в 1801 году, и весь долгий девятнадцатый век наука знала: свет это волны. Наверное, колебания некоего светоносного эфира, который мы раньше считали пустотой. Максвелл разработал теорию электромагнетизма, расписав формулы, которые нынче учат в школах и институтах. И все было прекрасно и удивительно в науке физике, которая, базируясь на ньютоновской механике, включала в себя также электродинамику и термодинамику (науку о распространении тепла).
Все было просто превосходно до тех пор пока не случилась та самая катастрофа.
Вы, скорее всего, даже вспомните ее название из школьного курса. Поскольку то, что случилось, воспринималось именно как крах, физики отразили свои переживания в самом названии проблемы «ультрафиолетовая катастрофа». Под зданием физики рванула настоящая бомба!
Поначалу не все физики поняли масштабы бедствия. Ньютонианская картина мира, дополненная теорией электромагнетизма Максвелла и термодинамикой Больцмана энд К
0
Диалог этот состоялся в 1874 году в стенах Мюнхенского университета между молодым человеком, выбиравшим свою жизненную стезю, и профессором физики Филиппом Жоли. Юноша колебался, какой путь выбрать стать физиком или музыкантом. Он писал музыкальные пьесы, отлично играл на рояле и имел хороший голос. Но физика его интересовала тоже, и в математике парень разбирался отлично. Старенький профессор окинул взглядом студента и сказал:
Молодой человек! Физика как наука кончилась: она практически завершена. Осталось сделать пару мелких уточнений, на которые вам, наверное, не стоит тратить жизнь.
Да я в мировые звезды и не рвусь. Ответил юноша. Меня устраивают мелочи. Сделаю пару уточнений!
Звали этого молодого человека Макс Планк. В 1947 году «Нью-Йорк Таймс» назвала его одним из самых величайших гигантов мысли в истории цивилизации наряду с Эйнштейном и Архимедом. На надгробии этого человека вместо дат рождения и смерти выбито число, которое в физике называется «постоянная Планка». Это главная константа квантового мира
Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла
Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.
А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был физика! Планк стоял в самом ее передовом ряду и не было никого первее.
Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?
Дырочек было две. Первая несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.
Что такое абсолютно черное тело?
Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике абсолютно черное тело (АЧТ). По определению, АЧТ это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!
Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.
Модель абсолютно черного тела. АЧТ это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.
Рис. 5
Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.
Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат тело должно было излучать бесконечно большую энергию!
Это было крайне неприятно увидеть такое в расчетах!
Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии результат эксперимента.
Рис. 6
Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».
Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.
Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.