Смил Вацлав - От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты стр 15.

Шрифт
Фон

Многие из работ этих авторов или подразумевают, или явно говорят о наступлении сингулярности, когда развитие искусственного суперинтеллекта достигнет такого уровня, что превратится в беспрецедентный неконтролируемый процесс. Подразумевается, что искусственный интеллект не только превзойдет человеческие возможности (вообразимые), но также приблизится по скорости обработки информации к мгновенной скорости физических изменений. Очевидно, что подобные достижения кардинальным образом изменят нашу цивилизацию. Адамс предсказывал (как он понимал ее, то есть исключая вычислительные измерения) наступление сингулярности в период между 1921 и 2025 годами (Adams, 1920). Корен (Coren, 1998) откладывал ее до 2140 года, а последние прогнозы Курцвейла, касающиеся момента, когда машины, работающие с помощью искусственного интеллекта, возьмут верх над людьми, относятся к 2045 году (Galleon and Reedy, 2017). Пока мы (как утверждают многие из этих авторов) неумолимо движемся к этой фантастической ситуации, сторонники ускоренного, то есть гиперболического, роста приводят другие его примеры, разворачивающиеся на наших глазах. Среди них чаще всего называют способность человечества обеспечивать продовольствием растущее население, использовать еще более мощные способы преобразования энергии или путешествовать на еще более высоких скоростях. Это отображается в виде последовательности логистических кривых, феномена, хорошо описанного Дереком Джоном де Соллой Прайсом (Derek J. de Solla Price, 1963, 21):

Каждое новое осознанное ограничение вызывает восстановительную реакцию Если реакция успешна, ее ценность обычно настолько трансформирует измеряемое явление, что оно обретает вторую жизнь и поднимается с новой силой, пока наконец не встретит свою гибель. Поэтому встречаются два варианта традиционной логистической кривой, более частые, чем простая S-образная интегральная кривая распределения. В обоих случаях вариант возникает во время перегиба, предположительно в тот момент, когда лишения, связанные с потерей экспоненциального роста, становятся невыносимыми. Если небольшое изменение определения измеряемого явления позволяет считать это явление новым наравне со старым, то новая логистическая кривая, как феникс, возрождается из пепла старой

Мейер и Валли (Meyer and Vallee, 1975) доказывали, что феномен логистического расширения или ускоренного роста недооценивается и что скорее гиперболический, чем экспоненциальный, рост довольно распространен, если рассматривать технический прогресс в долгосрочном плане. Их примеры гиперболического роста включают как число людей, которые могут прокормиться с участка земли, так и рост максимальной мощности первичных двигателей, скорости путешествий и максимальной эффективности методов преобразования энергии. Историческая траектория роста отдельных явлений описывается S-образными кривыми (логистическими или другими, с характерными для них асимптотами[10]), но огибающая кривая последовательных приростов делает всю последовательность роста временно гиперболической. Как и Прайс, Мейер и Валли (Meyer and Vallee, 1975, 295) рассматривали этот процесс передачи эстафеты как автоматическую последовательность: «как только машина достигает потолка производительности, другая, с качественно отличающейся технологией, подхватывает эстафету у предыдущей и превосходит ее предельный результат, в результате чего создается эффект поддержания ускорения количественной переменной».

Однако при более пристальном взгляде становится понятно, что реальность несколько сложнее.

Пищи, добытой первыми собирателями и охотниками, хватало всего на 0,0001 человека с гектара земли. В более благоприятных условиях это число достигало 0,002 человека/га. Переход к производящему сельскому хозяйству поднял плотность на два порядка, до 0,20,5 человека с гектара. Первые государства, где практиковалось интенсивное земледелие (Месопотамия, Египет, Китай), подняли этот показатель до 1 человека с гектара. Лучшие традиционные методы агрокультуры XIX века в таких интенсивно возделываемых регионах, как южный Китай, позволяли прокормить более 10 человек с гектара, обеспечивая в среднем гораздо лучшее питание, чем ранее (Smil, 2017a).

Но эта последовательность не описывает строго распределенное во времени универсальное эволюционное движение, так как во многих регионах собирательство тысячелетиями сосуществовало с оседлым земледелием (и существует по сегодняшний день: вспомним сбор трюфелей и охоту на кабанов в Тоскане). Переложное земледелие[11] практиковалось даже в некоторых частях Европы (Скандинавия, Россия) еще в XX веке и по-прежнему кормит миллионы семей в Латинской Америке, Африке и Азии, а такие гибридные методы, как агропасторализм[12], по-прежнему распространены там, где они помогают сократить риск чрезмерной зависимости от растениеводства.

И, очевидно, что даже если сажаются лучшие семена, а растения получают оптимальное питание, влагу и защиту от сорняков и вредителей, максимальный урожай по-прежнему ограничен интенсивностью освещения, продолжительностью вегетационного периода, морозостойкостью и уязвимостью перед множеством природных катаклизмов. Как я продемонстрирую в главе 2 (в разделе, посвященном росту сельскохозяйственных культур), во многих регионах, где прежде наблюдался рост производительности, теперь она сократилась, несмотря на активное применение удобрений и усиленную ирригацию, а динамика урожайности отражает минимальный прирост или откровенный застой. Ясно, что универсального, суперэкспоненциального роста урожайности не существует. Человеческий гений добился множества впечатляющих результатов, когда ему не нужно было считаться со сложностями организмов, чей жизненный цикл определяется разнообразными ограничениями среды. Технический прогресс демонстрирует лучшие примеры самоускоряющегося развития, за которым следуют траектории гиперболического роста, и максимальная удельная мощность первичных двигателей и скоростей передвижения являются точно задокументированными иллюстрациями.

Максимальная удельная мощность современных первичных двигателей (первичных источников механической энергии) в начале XVII века составляла 1000 Вт у паровых двигателей. Им на смену пришли водяные турбины (между 1850 и 1900 годами), а затем показатели мощности поднялись до рекордных более 1 ГВт у паровых турбин (рис. 1.8).


Рис. 1.8. Эстафетный рост мощности самых крупных стационарных первичных двигателей (Smil, 2017b). Пересекающийся логистический рост номинальных мощностей паровых двигателей, водяных турбин и паровых турбин дает временный гиперболический рост на семь порядков за 300 лет


Картину можно расширить, включив в нее ракетные двигатели, использовавшиеся только в течение коротких периодов времени: мощность ракеты Saturn C 5, осуществлявшей полет «Аполлона» на Луну, составляла около 2,6 ГВт (Tate, 2012). Аналогично максимальная скорость передвижения возросла со скорости человеческого бега (1012 км/ч скорость гонцов) и скорости всадников (средняя скорость 1316 км/ч) до скорости парусных судов (клиперы середины XIX века в среднем развивали скорость около 20 км/ч, а максимальная достигала 30 км/ч), поездов (максимум около 100 км/ч до 1900 года) и пассажирских самолетов на поршневых двигателях (чья скорость возросла с 160 км/ч в 1919 году до 550 км/ч в 1945 году) и, наконец, реактивных самолетов (более 900 км/ч с конца 1950-х годов).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора