То же происходит по всему мозгу, когда мы учимся соответствовать требованиям, налагаемым на нас средой, окружением и опытом. Нередко случается так, что определенные зоны мозга развиваются особым образом, поскольку ядра предрасположены иметь дело с определенной информацией. Многие из них сформировались еще в ходе эволюции, вот почему подобные зоны мы часто находим в мозге млекопитающих. Но как бы далеко мы ни зашли в этом направлении и какими бы сложными ни были наши навыки и умения, все это непосредственно связано с нашей чисто человеческой способностью учиться. Эволюция требовала от нас, чтобы мы обучались новым навыкам, дающим нам умение приспосабливаться к вечно меняющейся внешней среде, поэтому мы и развили такие структуры мозга, которые наделяют нас этим умением.
Способность клеток мозга адаптироваться к внешней среде и внешним условиям называется нейропластичностью, и она сопровождает нас всю нашу жизнь. Раньше считалось, что мозг полностью адаптируется к внешней среде только к возрасту полового созревания и что после этого функции клеток нашего мозга в значительной степени закрепляются и остаются неизменными. Теперь же мы знаем, что это не так. Да, получив повреждение мозга, дети восстанавливаются гораздо быстрее, чем взрослые, и в некоторых случаях поврежденные участки мозга у них отрастают заново. Но взрослые, в отличие от детей, могут восстанавливаться от самых различных типов повреждений в самом широком спектре, перестраивая нервные импульсы так, что они формируют новые проводящие пути. Мы также знаем, что нейроны могут расти и развиваться в течение всей жизни до тех пор, пока они воспринимают умственные или физические нагрузки, необходимые для стимуляции их роста.
Случай из практики: история Ноя Уолла
Процесс роста нейронов прекрасно иллюстрируется историей Ноя Уолла «мальчика, отрастившего мозг». У Ноя были врожденное расщепление позвоночника (спина бифида) и гидроцефалия (водянка головного мозга), так что места для собственно мозговой ткани оставалось очень мало. Больших полушарий мозга при рождении у него практически не было: внутричерепное пространство было заполнено цереброспинальной жидкостью, оказывавшей на неразвитый мозг существенное давление. Большинство младенцев в подобных обстоятельствах не выживают, но Ною очень повезло с родителями: это были очень любящие и решительные люди, которые в часы бодрствования всячески его стимулировали и занимались с ним различными видами активной деятельности. От давления жидкости удалось избавиться с помощью хирургического вмешательства, и, хотя с рождения мозг Ноя был очень маленьким, мозговая ткань, откликаясь на внешние нагрузки и активную среду, начала расти, и в конце концов у него сформировались большие полушария. К пяти годам они выросли почти до нормального размера, так что Ной во всех отношениях был абсолютно нормальным маленьким мальчиком.
Человеческий мозг тоже сохраняет способность адаптироваться к новым физическим условиям. Наблюдения за организмом астронавтов показали, что длительное нахождение в условиях невесомости способно привести к структурным изменениям в мозге. Согласно отчету, составленному командой исследователей под руководством В. Коппельманса (2016), для сравнения были взяты результаты магнитно-резонансной томографии (МРТ) мозга членов экипажа «Спейс шаттл» и астронавтов с Международной космической станции, сделанной перед отправлением в космос и после их возвращения. Оказалось, что в мозге астронавтов наросло большое количество серого вещества вокруг зон, которые отвечают за движения нижних конечностей. Чем больше времени они провели в космосе, тем более очевиден был этот образчик нейропластичности. Нижние конечности особо важны для передвижения по земле, в условиях земного тяготения, и менее важны в космосе, в условиях невесомости, поэтому исследователи пришли к разумному заключению, что нервные изменения обусловлены результатом работы головного мозга, пытавшегося приспособиться к новым условиям окружающей среды. Сходный, хотя и не совсем идентичный результат был получен при сравнении мозга здоровых людей с мозгом пациентов, которым был показан длительный постельный режим.
Другие исследования наглядно продемонстрировали, как мозг способен восстанавливаться после повреждения, полученного в результате сильного удара по голове, когда нарушается кровоснабжение того или иного участка мозга. Отсутствие кислорода приводит к гибели важнейших нервных клеток, в результате чего нарушаются такие функции, как движение или речь. Из медицинской практики нам известно, что организм человека способен восстановиться после столь серьезной травмы, и часто такие пациенты почти полностью возвращают себе эти функции, но для этого необходимо приложить немало усилий, если только они на это способны. Нервные клетки мозга реагируют на эти усилия тем, что полностью перестраиваются, минуя поврежденные участки и прокладывая новые проводящие пути в стремлении выполнить то действие или восстановить ту способность, которые требуются телу.
Даже люди, полностью лишившиеся целых участков мозга, могут иногда восстанавливать утраченные функции. В главе 10 мы рассмотрим те зоны и участки мозга, которые отвечают за речевую функцию и которые в большинстве своем (хотя далеко не всегда) находятся в левом полушарии. Повреждения, нанесенные этим участкам левого полушария, могут серьезно нарушить речевую способность человека умение разговаривать или произносить слова или даже понимать их смысл. Но интересен следующий факт: в 1980 году Гуч привел отчет о наглядных результатах одной операции. Несколько пациентов были доставлены в больницу с такими серьезными повреждениями левого полушария мозга, что хирурги решили полностью удалить эту половину. До операции пациенты совершенно не владели речью, однако после того, как поврежденное полушарие было удалено, утраченная функция начинала восстанавливаться: люди снова начинали говорить, понимать и даже вспоминать слова старых песен. Языковые/речевые функции, прежде возложенные на левое полушарие, теперь брала на себя правая сторона их мозга. Прежде о таком уровне нейропластичности мозга никто даже не подозревал, и этот пример лишний раз доказывает, сколь ошибочно создавать упрощенные модели работы мозга. Она всегда гораздо сложнее, чем кажется поначалу!
Латерализация мозга
Отчет Гуча опроверг представление о том, что речевая способность сосредоточена только в левом полушарии, и показал, сколь пластичны полушария нашего мозга и какой сильной адаптивной способностью они наделены. Общее правило гласит, что нашему мозгу присуща определенная латерализация: одна сторона мозга отвечает за одни функции, а вторая за другие. Например, левая сторона головного мозга контролирует правую сторону тела, а правая сторона мозга левую сторону тела. Так, приказ выполнить то или иное действие, отданный правой стороной мозга руке, приведет в движение вашу левую руку, и наоборот.
Исключениями из этого правила являются лишь органы зрения и слуха, расположенные на голове: глаза и уши имеют взаимные точки пересечения, так что информация, поступающая от каждого глаза или уха, воспринимается обеими сторонами мозга. Для человека это жизненно важно, поскольку умение уловить разницу в звуках, воспринимаемых каждым ухом, позволяет нам узнать, с какой стороны находится источник этого звука. То же и с глазами: наличие перекрестного обзора означает, что информация, воспринимаемая левосторонней частью глаза от источника, находящегося в правой области его поля обзора, поступает в левое полушарие мозга, а информация, воспринимаемая правосторонней частью глаза, поступает в правое полушарие. Поэтому каждый глаз способен обозревать все визуальное поле, а мозг, кроме того, может сравнивать между собой два образа.