Имитационное моделирование движения поезда на участках автономной тяги
Евгений Лосев
© Евгений Лосев, 2023
ISBN 978-5-0056-9166-8
Создано в интеллектуальной издательской системе Ridero
ВВЕДЕНИЕ
Сложные технические процессы математически описываются системой нелинейных дифференциальных уравнений, которые в общем случае не решаются в аналитическом виде, а использование численных методов решения нередко сопряжено со значительными вычислительными трудностями. Визуальное имитационное моделирование таких процессов позволяет наглядно представить их в виде структурной схемы, состоящей из различных блоков своего рода «кирпичиков», из которых строится «здание», т. е. моделируемая система. К таким сложным техническим процессам относится и процесс движения поезда, моделированию которого на участках автономной тяги посвящена эта книга.
В книге описаны математические модели, созданные средствами пакета Xcos, входящего в свободно распространяемую программу SciLab и являющегося бесплатным аналогом таких коммерческих пакетов как Simulink и VisSim. Несмотря на это, Xcos не уступает им по своим возможностям, во всяком случае, в рамках решаемых нами здесь задач. Скачать SciLab можно на сайте https://www.scilab.org/. Пакет поставляется в версиях для операционных систем Windows, Linux и MacOS.
Структура книги построена следующим образом. В каждой главе рассмотрена группа однотипных задач, решаемых тяговыми расчётами прикладной частью инженерной дисциплины «Тяга поездов» [1]. В начале главы даётся теоретическое описание задачи; затем приведено построение имитационной модели средствами Xcos; далее представлены результаты моделирования.
Предполагается, что читатель знаком с основами моделирования в среде Xcos или ей аналогичных.
ГЛАВА 1. СИЛА ТЯГИ АВТОНОМНЫХ ЛОКОМОТИВОВ
Сила тяги есть сила реакции рельса F
К
Сила тяги F
К
для тепловоза работе газа во всех цилиндрах дизеля за вычетом работы сил сопротивления в самом дизеле (главным образом трения), энергии, затраченной на вспомогательные нужды (компрессор, холодильник, аккумуляторная батарея, вентиляторы и пр.) и работы сил сопротивления в передаточном механизме;
для газотурбовоза работе газа на лопатках турбины за вычетом работы, затрачиваемой на компрессор, вспомогательные нужды и на преодоление сил сопротивления в передаточном механизме;
для паровоза работе пара в паровой машине за вычетом работы сил в дышловом механизме.
Сила тяги любого локомотива ограничена сцеплением колеса с рельсом. Это значит, что сила тяги не может превышать силу сцепления, иначе возникнет боксование. Математически это выражается так:
F
к
к
Pсц
где P
сц
движущих осей на рельсы; ψ
к
1.1. Сила тяги и тяговые характеристики тепловозов
Расчётный коэффициент сцепления для тепловозов определяется по эмпирической формуле вида
ψ
к
a b c vгде
a, b и c коэффициенты, зависящие от серии тепловоза;
v скорость движения, км/ч.
Подставив (2) в (1), определяем силу тяги по сцеплению.
Кроме ограничения по сцеплению сила тяги тепловоза также ограничивается мощностью дизеля и электрической передачи.
Сила тяги по дизелю определяется выражением
F
к
dц
2
lmpinд
м
всп
пер
vгде
d
ц
l ход поршней, м;
m число цилиндров дизеля;
pi среднее индикаторное давление, кгс/см
2
nд частота вращения коленвала, об/мин;
η
м
только в самом дизеле;
β
всп
вспомогательные нагрузки;
η
пер
τ тактность дизеля: 2 двухтактный; 4 четырёхтактный.
Сила тяги по передаче определяется как
F
к
Iг
Uг
д
z
vгде
I
г
U
г
η
д
η
z
Рис. 1.1.1
Сила тяги по электрической передаче ограничивается величиной тока, вызывающего перегрев обмоток главного генератора или тяговых электродвигателей выше допустимого.
Тяговые характеристики тепловозов различных серий приводятся в Правилах тяговых расчётов для поездной работы (ПТР) [2] или в технической документации завода-изготовителя.
Паспортные тяговые характеристики тепловозов 2ТЭ25КМ, 2ТЭ116У и ТЭП70 показаны на рис. 1.1.1 1.1.3.
Рис. 1.1.2
1.2. Сила тяги и тяговые характеристики газотурбовозов
Сила тяги газотурбовозов с электрической передачей постоянного, постоянно-переменного и переменного тока с частотным регулированием имеет те же ограничения, что и рассмотренные в предыдущем параграфе. Тяговые характеристики газотурбовозов с такими «эластичными» передачами также схожи с тепловозными.
При механической передаче или жёсткой передаче переменного тока (при свободной тяговой турбине) тяговая характеристика как бы копирует моментную характеристику тяговой турбины. Простейшая одно- или двухступенчатая газовая турбина имеет практически линейную моментную характеристику, а следовательно, газотурбовоз с такой турбиной имеет также линейную тяговую характеристику, причём обычно ограничение по сцеплению лежит значительно выше силы тяги при частоте вращения турбины и, соответственно, скорости движения v = 0.
Рис. 1.1.3
Приближение тяговой характеристики к гиперболической осуществляется либо введением одной или нескольких ступеней скорости, либо за счёт улучшения характеристики турбины применением различных программ регулирования, в частности, поворотом лопаток. При нерегулируемых проточных частях близкую к гиперболической характеристику можно получить за счёт форсирования турбокомпрессорной части на нерасчётных режимах, увеличивая скорость вращения вала турбокомпрессора при изменении скорости тяговой турбины [3].
1.3. Сила тяги и тяговые характеристики паровозов
В последнее время интерес к казалось бы навсегда ушедшим в историю паровозам вновь возрос в связи с организацией ретро-туров для любителей паровой тяги. Кроме того, по распоряжению РЖД, в России поддерживается небольшой парк горячих паровозов в нескольких локомотивных депо (в специально выделенных для этих целей цехах). Аналогичное положение существует и на Украине.
Расчётный коэффициент сцепления для паровозов согласно ПТР определяется по формуле
ψ
к
vКроме ограничения по сцеплению, у паровозов сила тяги ограничивается паропроизводительностью котла (ограничение силы тяги по котлу) и машиной.
Сила тяги по котлу имеет следующую зависимость:
F
к
zм
H/U/Nк
vгде
z
м
в машину, кг/м
2
H испаряющая поверхность нагрева котла, м
2
U/N
к
Сила тяги по машине определяется выражением
F
К
Mм
где
M = (d
ц
2
dш
2
dкш
2
lmpкDd
ц
d
ш
dкш
l ход поршней, см;
m число цилиндров;
pк котловое давление, кгс/см
2
D диаметр движущих колёс, см;
ξ = p
i
pкp
i
2
η
м
Рис. 1.3.1
Коэффициент индикаторного давления для паровозов, работающих на перегретом паре равен [4]:
ξ (ε) = (1,3ε ε
1,3
Добавляя зависимость от скорости, это выражение можно преобразовать к следующему виду:
ξ (v, ε) = {1,3 [ε + a (ε) v] ε
1,3+b (ε) v
cvгде ε величина отсечки (доля хода поршня, в течение
которой происходит поступление пара в паровую машину);
a (ε), b (ε), c (ε) коэффициенты, зависящие от серии
паровоза и отсечки.
Тяговые характеристики различных серий паровозов приводятся в ПТР.
Паспортные тяговые характеристики паровоза П36 показаны на рис. 1.3.1.
1.4. Построение имитационных моделей тепловозов и паровозов
Грузовые тепловозы 2ТЭ25КМ, 2ТЭ116У и пассажирский ТЭП70 оборудованы четырёхтактным шестнадцатицилиндровым дизелем 16ЧН26/26 номинальной мощностью 3600/40001 л.с. (2650/2940 кВт). Ход поршня равен диаметру цилиндра и составляет 26 см. Среднее индикаторное давление 16,4/18,2 кгс/см
2
Имитационные модели должны формировать тяговую характеристику локомотивов со всеми имеющимися ограничениями. На вход подаётся скорость, при этом на выходе получается сила тяги.