Лосев Евгений - Имитационное моделирование движения поезда на участках автономной тяги

Шрифт
Фон

Имитационное моделирование движения поезда на участках автономной тяги


Евгений Лосев

© Евгений Лосев, 2023


ISBN 978-5-0056-9166-8

Создано в интеллектуальной издательской системе Ridero

ВВЕДЕНИЕ

Сложные технические процессы математически описываются системой нелинейных дифференциальных уравнений, которые в общем случае не решаются в аналитическом виде, а использование численных методов решения нередко сопряжено со значительными вычислительными трудностями. Визуальное имитационное моделирование таких процессов позволяет наглядно представить их в виде структурной схемы, состоящей из различных блоков  своего рода «кирпичиков», из которых строится «здание», т. е. моделируемая система. К таким сложным техническим процессам относится и процесс движения поезда, моделированию которого на участках автономной тяги посвящена эта книга.

В книге описаны математические модели, созданные средствами пакета Xcos, входящего в свободно распространяемую программу SciLab и являющегося бесплатным аналогом таких коммерческих пакетов как Simulink и VisSim. Несмотря на это, Xcos не уступает им по своим возможностям, во всяком случае, в рамках решаемых нами здесь задач. Скачать SciLab можно на сайте https://www.scilab.org/. Пакет поставляется в версиях для операционных систем Windows, Linux и MacOS.

Структура книги построена следующим образом. В каждой главе рассмотрена группа однотипных задач, решаемых тяговыми расчётами  прикладной частью инженерной дисциплины «Тяга поездов» [1]. В начале главы даётся теоретическое описание задачи; затем приведено построение имитационной модели средствами Xcos; далее представлены результаты моделирования.

Предполагается, что читатель знаком с основами моделирования в среде Xcos или ей аналогичных.

ГЛАВА 1. СИЛА ТЯГИ АВТОНОМНЫХ ЛОКОМОТИВОВ

Сила тяги есть сила реакции рельса F

К

Сила тяги F

К

для тепловоза  работе газа во всех цилиндрах дизеля за вычетом работы сил сопротивления в самом дизеле (главным образом трения), энергии, затраченной на вспомогательные нужды (компрессор, холодильник, аккумуляторная батарея, вентиляторы и пр.) и работы сил сопротивления в передаточном механизме;

для газотурбовоза  работе газа на лопатках турбины за вычетом работы, затрачиваемой на компрессор, вспомогательные нужды и на преодоление сил сопротивления в передаточном механизме;

для паровоза  работе пара в паровой машине за вычетом работы сил в дышловом механизме.

Сила тяги любого локомотива ограничена сцеплением колеса с рельсом. Это значит, что сила тяги не может превышать силу сцепления, иначе возникнет боксование. Математически это выражается так:


F

к 

к

P

сц


где P

сц

движущих осей на рельсы; ψ

к

1.1. Сила тяги и тяговые характеристики тепловозов

Расчётный коэффициент сцепления для тепловозов определяется по эмпирической формуле вида


ψ

к

v


где

a, b и c  коэффициенты, зависящие от серии тепловоза;

скорость движения, км/ч.

Подставив (2) в (1), определяем силу тяги по сцеплению.

Кроме ограничения по сцеплению сила тяги тепловоза также ограничивается мощностью дизеля и электрической передачи.

Сила тяги по дизелю определяется выражением


F

к

d

ц

2

lmpin

д

м

всп

пер

v


где

d

ц

ход поршней, м;

m  число цилиндров дизеля;

pi  среднее индикаторное давление, кгс/см

2

nд  частота вращения коленвала, об/мин;

η

м

только в самом дизеле;

β

всп

вспомогательные нагрузки;

η

пер

τ  тактность дизеля: 2  двухтактный; 4  четырёхтактный.

Сила тяги по передаче определяется как


F

к

I

г

U

г

д

v


где

I

г

U

г

η

д

η

z


Рис. 1.1.1


Сила тяги по электрической передаче ограничивается величиной тока, вызывающего перегрев обмоток главного генератора или тяговых электродвигателей выше допустимого.

Тяговые характеристики тепловозов различных серий приводятся в Правилах тяговых расчётов для поездной работы (ПТР) [2] или в технической документации завода-изготовителя.

Паспортные тяговые характеристики тепловозов 2ТЭ25КМ, 2ТЭ116У и ТЭП70 показаны на рис. 1.1.1  1.1.3.


Рис. 1.1.2

1.2. Сила тяги и тяговые характеристики газотурбовозов

Сила тяги газотурбовозов с электрической передачей постоянного, постоянно-переменного и переменного тока с частотным регулированием имеет те же ограничения, что и рассмотренные в предыдущем параграфе. Тяговые характеристики газотурбовозов с такими «эластичными» передачами также схожи с тепловозными.

При механической передаче или жёсткой передаче переменного тока (при свободной тяговой турбине) тяговая характеристика как бы копирует моментную характеристику тяговой турбины. Простейшая одно- или двухступенчатая газовая турбина имеет практически линейную моментную характеристику, а следовательно, газотурбовоз с такой турбиной имеет также линейную тяговую характеристику, причём обычно ограничение по сцеплению лежит значительно выше силы тяги при частоте вращения турбины и, соответственно, скорости движения v = 0.


Рис. 1.1.3


Приближение тяговой характеристики к гиперболической осуществляется либо введением одной или нескольких ступеней скорости, либо за счёт улучшения характеристики турбины применением различных программ регулирования, в частности, поворотом лопаток. При нерегулируемых проточных частях близкую к гиперболической характеристику можно получить за счёт форсирования турбокомпрессорной части на нерасчётных режимах, увеличивая скорость вращения вала турбокомпрессора при изменении скорости тяговой турбины [3].

1.3. Сила тяги и тяговые характеристики паровозов

В последнее время интерес к казалось бы навсегда ушедшим в историю паровозам вновь возрос в связи с организацией ретро-туров для любителей паровой тяги. Кроме того, по распоряжению РЖД, в России поддерживается небольшой парк горячих паровозов в нескольких локомотивных депо (в специально выделенных для этих целей цехах). Аналогичное положение существует и на Украине.

Расчётный коэффициент сцепления для паровозов согласно ПТР определяется по формуле


ψ

к

v


Кроме ограничения по сцеплению, у паровозов сила тяги ограничивается паропроизводительностью котла (ограничение силы тяги по котлу) и машиной.

Сила тяги по котлу имеет следующую зависимость:


F

к

z

м

H/U/N

к

v


где

z

м

в машину, кг/м

2

испаряющая поверхность нагрева котла, м

2

U/N

к

Сила тяги по машине определяется выражением


F

К

 M

м


где

M = (d

ц

2

d

ш

2

d

кш

2

lmpкD

d

ц 

d

ш

d

кш

l  ход поршней, см;

m  число цилиндров;

pк  котловое давление, кгс/см

2

D  диаметр движущих колёс, см;

ξ = p

i

pк

p

i

2

η

м


Рис. 1.3.1


Коэффициент индикаторного давления для паровозов, работающих на перегретом паре равен [4]:


ξ (ε) = (1,3ε  ε

1,3


Добавляя зависимость от скорости, это выражение можно преобразовать к следующему виду:


ξ (v, ε) = {1,3 [ε + a (ε) v]  ε

1,3+b (ε) v

cv


где ε  величина отсечки (доля хода поршня, в течение

которой происходит поступление пара в паровую машину);

a (ε), b (ε), c (ε)  коэффициенты, зависящие от серии

паровоза и отсечки.

Тяговые характеристики различных серий паровозов приводятся в ПТР.

Паспортные тяговые характеристики паровоза П36 показаны на рис. 1.3.1.

1.4. Построение имитационных моделей тепловозов и паровозов

Грузовые тепловозы 2ТЭ25КМ, 2ТЭ116У и пассажирский ТЭП70 оборудованы четырёхтактным шестнадцатицилиндровым дизелем 16ЧН26/26 номинальной мощностью 3600/40001 л.с. (2650/2940 кВт). Ход поршня равен диаметру цилиндра и составляет 26 см. Среднее индикаторное давление 16,4/18,2 кгс/см

2

Имитационные модели должны формировать тяговую характеристику локомотивов со всеми имеющимися ограничениями. На вход подаётся скорость, при этом на выходе получается сила тяги.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3