Александр Юрьевич Чесалов - Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 стр 23.

Шрифт
Фон


Искусственный интеллект для ИТ-операций (Artificial Intelligence for IT Operations, AIOps)  это использование машинного обучения и других технологий искусственного интеллекта для автоматизации различных рабочих и технологических ИТ-процессов, которые инженерами-программистами выполняются вручную. AIOps похож на MLOps тем, что использует машинное обучение и другие технологии искусственного интеллекта для автоматизации ИТ-процессов. AIOps отличается от MLOps тем, что автоматизация процессов происходит в отделе ИТ-операций организации, а не в группе машинного обучения и искусственного интеллекта. Также AIOps отличается от MLOps тем, что использует искусственный интеллект для автоматизации группы процессов, а не только одной или двух задач, как это делает MLOps. Искусственный интеллект для ИТ-операций  это новая ИТ-практика, которая применяет искусственный интеллект к ИТ-операциям, чтобы помочь организациям разумно управлять ИТ-инфраструктурой, сетями и приложениями для обеспечения высокого качества, производительности, отказоустойчивости и безопасности. Термин AIOps появился в 2016 году, как отраслевая категория, которая помогает улучшить процессы автоматизации ИТ-операций с помощью технологий искусственного интеллекта387,388,389.



Искусственный Интеллект на уровне человека (Human Level Machine Intelligence)  это синоним полного ИИ, завершенного ИИ, сильного ИИ. Этот термин обозначает степень развития искусственного интеллекта на уровне человека. Человеческий мозг является моделью для создания такого интеллекта.


Искусственный нейрон (Artificial neuron)  это математическая функция, задуманная как модель биологических нейронов, нейронная сеть. Разница между искусственным нейроном и биологическим нейроном представлена на рисунке. Искусственные нейроны  это элементарные единицы искусственной нейронной сети. Искусственный нейрон получает один или несколько входных сигналов (представляющих возбуждающие постсинаптические потенциалы и тормозные постсинаптические потенциалы на нервных дендритах) и суммирует их для получения выходного сигнала (или активации, представляющего потенциал действия нейрона, который передается по его аксону). Обычно каждый вход взвешивается отдельно, а сумма проходит через нелинейную функцию, известную как функция активации или передаточная функция. Передаточные функции обычно имеют сигмовидную форму, но они также могут принимать форму других нелинейных функций, кусочно-линейных функций или ступенчатых функций. Они также часто являются монотонно возрастающими, непрерывными, дифференцируемыми и ограниченными390,391.



Искусственный сверхинтеллект (Artificial Super Intelligence, ASI)  это термин, который обозначает наивысшую степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах его жизнедеятельности392. На сегодняшний день систем искусственного сверхинтеллекта также, как и систем сильного или общего искусственного интеллекта не существует. Многие ученые считают, что до создания супер интеллекта пройдет очень много времени, но большинство из них все же сходятся во мнении, что это рано или поздно произойдет.



Исполняемый код (Executable)  это исполняемая программа, иногда называемая просто исполняемым или двоичным файлом, заставляет компьютер «выполнять указанные задачи в соответствии с закодированными инструкциями», в отличие от файла данных, который необходимо интерпретировать (открыть) программой, чтобы получить действие или результат393.


Исследование (Study)  это вся информация, собранная в одно время или для одной цели или одним главным исследователем. Исследование состоит из одного или нескольких файлов394.


Исследования будущего (Futures studies)  это изучение постулирования возможных, вероятных и предпочтительных вариантов будущего, а также мировоззрений и мифов, лежащих в их основе395.


Исходная отметка (Бенчмарк) ИИ (AI benchmark)  это эталонный тест ИИ для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, исходные отметки. Например, Benchmarking Graph Neural Networks  бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN)  обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.


Исчисление высказываний (также логика высказываний и логика нулевого порядка) (Propositional calculus)  это раздел логики, который имеет дело с высказываниями (которые могут быть истинными или ложными) и потоком аргументов. Сложные предложения образуются путем соединения предложений логическими связками. Предложения без логических связок называются атомарными предложениями. В отличие от логики первого порядка, логика высказываний не имеет дело с нелогическими объектами, предикатами о них или кванторами. Однако весь механизм пропозициональной логики включен в логику первого порядка и логику высшего порядка. В этом смысле логика высказываний является основой логики первого порядка и логики высшего порядка396.


Исчисление соединений регионов (Region connection calculus, RCC)  это действие предназначено для качественного пространственного представления и рассуждений. RCC абстрактно описывает регионы (в евклидовом пространстве или в топологическом пространстве) их возможными отношениями друг к другу. RCC8 состоит из 8 основных отношений, которые возможны между двумя регионами397.


Итерация (Iteration)  это обновление весов после анализа пакета входных записей, которое представляет собой одну итерацию обновления параметров модели нейронной сети398.


Исходный код (Source code)  это любой набор кода с комментариями или без них, написанный с использованием удобочитаемого языка программирования, обычно в виде простого текста. Исходный код программы специально разработан для облегчения работы компьютерных программистов, которые определяют действия, которые должны выполняться компьютером, в основном, путем написания исходного кода. Исходный код часто преобразуется ассемблером или компилятором в двоичный машинный код, который может выполняться компьютером. Затем машинный код может быть сохранен для выполнения в более позднее время399.

«К»

Калибровочный слой (Calibration layer)  это корректировка после прогнозирования, обычно для учета смещения прогноза. Скорректированные прогнозы и вероятности должны соответствовать распределению наблюдаемого набора меток400.


Канонические форматы (Canonical Formats) в информационных технологиях канонизация  это процесс приведения чего-либо в соответствие с некоторой спецификацией и в утвержденном формате. Канонизация иногда может означать создание канонических данных из неканонических данных. Канонические форматы широко поддерживаются и считаются оптимальными для долгосрочного хранения401.


Капсульная нейронная сеть (Capsule neural network)  это архитектура искусственных нейронных сетей, которая предназначена для распознавания изображений. Главными преимуществами данной архитектуры является существенное снижение размеров необходимой для обучения выборки, а также повышение точности распознавания и устойчивость к атакам типа «белый ящик». Ключевым нововведением капсульных нейросетей является наличие так называемых капсул  элементов, являющихся промежуточными единицами между нейронами и слоями, которые представляют собой группы виртуальных нейронов, отслеживающих не только отдельные детали изображения, но и их расположение друг относительно друга. Данная архитектура была задумана Джеффри Хинтоном в 1979 году, сформулирована в 2011 году и опубликована в двух статьях в октябре 2017 года402,403.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3