Александр Юрьевич Чесалов - Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 стр 2.

Шрифт
Фон


Чтобы заинтересовать уважаемого читателя, приведем еще несколько «забавных» примеров.


Слышали ли вы когда-нибудь о «Трансгуманистах»?

С одной стороны, как идея Трансгуманизм (Transhumanism)  это расширение возможностей человека с помощью науки. С другой стороны  это философская концепция и международное движение, приверженцы которого желают стать «постлюдьми» и преодолеть всевозможные физические ограничения, болезни, душевные страдания, старость и смерть благодаря использованию возможностей нано- и био- технологий, искусственного интеллекта и когнитивной науки.

На наш взгляд, идеи «трансгуманизма» очень тесно пересекаются с идеями и концепциями «цифрового человеческого бессмертия».


TEDx ForestersPark 2019 год


Несомненно, вы слышали и конечно знаете, кто такой «Data Scientist»  ученый и специалист по работе с данными.


А слышали ли вы когда-нибудь о «датасатанистах»? :-)

Датасатанисты  это определение, придуманное авторами, но отражающее современную действительность (наравне, например, с термином «инфоцыганщина»), которая сформировалась в период популяризации и повсеместной реализации идей искусственного интеллекта в современном информационном обществе. По своей сути датасатанисты  это мошенники и преступники, которые очень умело маскируются под ученых и специалистов в области ИИ и МО, но при этом пользуются чужими заслугами, знаниями и опытом, в своих корыстных целях и целях незаконного обогащения.


А, как вам такой термин  «библеоклазм»?

Библиоклазм  человек, в силу своего трансформированного мировоззрения и чрезмерно раздутого эго, из зависти или какой-либо другой корыстной цели, который стремится уничтожить книги других авторов. Вы не поверите, но таких людей, как «датасатанисты» или «библиоклазмы» сейчас достаточно.


А, как вам такие термины: «искусственная жизнь», «искусственный сверхинтеллект», «нейроморфный искусственный интеллект», «человеко-ориентированный искусственный интеллект», «синтетический интеллект», «распределенный искусственный интеллект», «дружественный искусственный интеллект», «дополненный искусственный интеллект», «композитный искусственный интеллект», «объяснимый искусственный интеллект», «причинно-следственный искусственный интеллект», «символический искусственный интеллект» и многие другие (все они есть в этой книге).


Таких примеров «удивительных» терминов мы можем привести еще не мало. Но в своей работе мы не стали тратить время на «суровую действительность» и сместили акцент на конструктивный и позитивный настрой. Одним словом, мы провели для Вас большую работу и собрали более 2500 терминов и определений по машинному обучению и искусственному интеллекту на основе своего опыта и данных из огромного числа различных источников.


2500 терминов и определений.

Много это или мало?

Наш опыт подсказывает, что для взаимопонимания двум собеседникам достаточно знать десяток или, максимум, два десятка определений. Но, когда дело касается профессиональной деятельности, то может получиться так, что мало знать, даже, несколько десятков терминов.

В этой книге приведены самые актуальные термины и определения, по-нашему мнению, наиболее часто употребляемые, как в повседневной работе, так и профессиональной деятельности специалистами самых разных профессий, интересующихся темой «искусственного интеллекта».

Мы очень старались сделать для вас нужный и полезный «инструмент» для вашей работы.


В заключение хочется добавить и проинформировать уважаемого читателя о том, что эта книга является абсолютно открытым и свободным к распространению документом. В случае, если Вы используете ее в своей практической работе, просим Вас делать ссылку на нее.

Многие из терминов и определений к ним, в этой книге, встречаются в сети Интернет. Они повторяются десятки или сотни раз на различных информационных ресурсах (в основном на зарубежных). Тем не менее, мы поставили перед собой цель  собрать и систематизировать самые актуальные из них в одном месте из самых разных источников, нужные из них перевести на русский язык и/или адаптировать, а какие-то и написать заново, исходя из собственного опыта.

Учитывая вышесказанное, мы не претендуем на авторство или уникальность представленных терминов и определений, но, несомненно, мы внесли свой собственный вклад в систематизацию и адаптацию многих из них.


Книга написана, прежде всего, для вашего удовольствия.

Мы продолжаем работу по улучшению качества и содержания текста этой книги, в том числе дополняем ее новыми знаниями по предметной области. Будем вам благодарны за любые отзывы, предложения и уточнения. Направляйте их, пожалуйста, на aleksander.chesalov@yandex.ru


Приятного Вам чтения и продуктивной работы!


Ваши, Александр Чесалов, Александр Власкин и Матвей Баканач.


16.08.2022. Издание первое.

09.03.2023. Издание второе. Исправленное и дополненное.

01.01.2024. Издание третье. Исправленное и дополненное.


Глоссариум по искусственному интеллекту

«А»

А/B-тестирование, также известное как сплит-тестирование (A/B Testing)  это процесс экспериментирования, при котором две или более версии переменной (веб-страницы, элемента страницы и т.д.) одновременно демонстрируются разным сегментам посетителей веб-сайта, чтобы определить, какая версия оказывает максимальное влияние и повышает бизнес-показатели2.


Абдуктивное логическое программирование (Abductive logic programming, ALP)  это высокоуровневая структура представления знаний, которая может использоваться для решения проблем декларативно  на основе абдуктивного рассуждения. Она расширяет нормальное логическое программирование, позволяя некоторым предикатам быть неполно определенными, объявленными как абдуктивные предикаты3.


Абдукция (Abductive reasoning)  (от латинского ab  «c, от», ducere  «водить»)  это форма логического вывода, которая начинается с наблюдения или набора наблюдений, а затем пытается найти самое простое и наиболее вероятное объяснение. Этот процесс, в отличие от дедуктивного рассуждения, дает правдоподобный вывод, но не подтверждает его основаниями для вывода4.


Абстрактный тип данных (Abstract data type)  это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций. Формально АТД может быть определён как множество объектов, определяемое списком компонентов (операций, применимых к этим объектам, и их свойств)5.


Абстракция (Abstraction)  это использование только тех характеристик объекта, которые с достаточной точностью представляют его в данной системе. Основная идея состоит в том, чтобы представить объект минимальным набором полей и методов и при этом с достаточной точностью для решаемой задачи6.


Автоассоциативная память (Auto Associative Memory)  это однослойная нейронная сеть, в которой входной обучающий вектор и выходные целевые векторы совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Как показано на следующем рисунке, архитектура сети автоассоциативной памяти имеет «n» количество входных обучающих векторов и аналогичное «n» количество выходных целевых векторов7.



Автокодер (Автоэнкодер) (Autoencoder, AE)  это нейронная сеть, которая копирует входные данные на выход. По архитектуре похож на персептрон. Автоэнкодеры сжимают входные данные для представления их в latent-space (скрытое пространство), а затем восстанавливают из этого представления output (выходные данные). Цель  получить на выходном слое отклик, наиболее близкий к входному. Отличительная особенность автоэнкодеров  количество нейронов на входе и на выходе совпадает8.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3