Александр Юрьевич Чесалов - Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 стр 14.

Шрифт
Фон

Граница решения (Decision boundary)  это разделитель между классами, изученными моделью в задачах классификации двоичного класса или нескольких классов228.


Граница решения или поверхность решения (в статистико-классификационной задаче с двумя классами) (Decision boundary)  это гиперповерхность, разделяющая нижележащее векторное пространство на два множества, по одному для каждого класса. Классификатор классифицирует все точки на одной стороне границы принятия решения как принадлежащие одному классу, а все точки на другой стороне как принадлежащие другому классу.


Граф (Graph)  это таблица, составленная из данных (тензоров) и математических операций. TensorFlow  это библиотека для численных расчетов, в которой данные проходят через граф. Данные в TensorFlow представлены n-мерными массивами  тензорами229.


Граф (абстрактный тип данных) (Graph)  в информатике граф  это абстрактный тип данных, который предназначен для реализации концепций неориентированного графа и ориентированного графа из математики; в частности, область теории графов230.


Граф (с точки зрения компьютерных наук и дискретной математики) (Graph)  это абстрактный способ представления типов отношений, например дорог, соединяющих города, и других видов сетей. Графы состоят из рёбер и вершин. Вершина  это точка на графе, а ребро  это то, что соединяет две точки на графе231.


Графический кластер (Graphics Processing Cluster, GPC)  это доминирующий высокоуровневый блок, включающий все ключевые графические составляющие232.


Графический процессор (Graphical Processing Unit)  это отдельный процессор, расположенный на видеокарте, который выполняет обработку 2D или 3D графики. Имея процессор на видеокарте, компьютерный процессор освобождается от лишней работы и может выполнять все другие важные задачи быстрее. Особенностью графического процессора (GPU), является то, что он максимально нацелен на увеличение скорости расчета именно графической информации (текстур и объектов). Благодаря своей архитектуре такие процессоры намного эффективнее обрабатывают графическую информацию, нежели типичный центральный процессор компьютера233.


Графический процессор-вычислитель (Computational Graphics Processing Unit) (ГП-вычислитель cGPU)  это многоядерный ГП, используемый в гибридных суперкомпьютерах для выполнения параллельных математических вычислений; например, один из первых образцов ГП этой категории содержит более 3 млрд транзисторов  512 ядер CUDA и память ёмкостью до 6 Гбайт234.


Графовая база данных (Graph database)  это база, предназначенная для хранения взаимосвязей и навигации в них. Взаимосвязи в графовых базах данных являются объектами высшего порядка, в которых заключается основная ценность этих баз данных. В графовых базах данных используются узлы для хранения сущностей данных и ребра для хранения взаимосвязей между сущностями. Ребро всегда имеет начальный узел, конечный узел, тип и направление. Ребра могут описывать взаимосвязи типа «родитель-потомок», действия, права владения и т. п. Ограничения на количество и тип взаимосвязей, которые может иметь узел, отсутствуют. Графовые базы данных имеют ряд преимуществ в таких примерах использования, как социальные сети, сервисы рекомендаций и системы выявления мошенничества, когда требуется создавать взаимосвязи между данными и быстро их запрашивать235.


Графовые нейронные сети (Graph neural networks)  это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети  это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов. GNN могут делать то, что не смогли сделать сверточные нейронные сети (CNN). Также под Графовыми нейронными сетями понимают нейронные модели, которые фиксируют зависимость графов посредством передачи сообщений между узлами графов. В последние годы варианты GNN, такие как сверточная сеть графа (GCN), сеть внимания графа (GAT), рекуррентная сеть графа (GRN), продемонстрировали новаторские характеристики во многих задачах глубокого обучения236.


Графы знаний (Knowledge graphs)  это структуры данных, представляющие знания о реальном мире, включая сущности люди, компании, цифровые активы и т.д.) и их отношения, которые придерживаются модели данных графа  сети узлов (вершин) и соединения (ребер/дуг)237.


Гребенчатая регуляризация (Ridge regularization)  синоним «Регуляризации L

2

2

«Д»

Данные (Data)  это информация собранная и трансформированная для определенных целей, обычно анализа. Это может быть любой символ, текст, цифры, картинки, звук или видео.


Данные тестирования (Testing Data)  это подмножество доступных данных, выбранных специалистом по данным для этапа тестирования разработки модели.


Данные ограниченного использования (Restricted-use data)  это данные, которые содержат конфиденциальную информацию (обычно о людях), которая может позволить идентифицировать людей. Наличие конфиденциальной информации в депонированном цифровом контенте представляет собой проблему управления для долгосрочного хранения, чтобы гарантировать, что требования к архивному хранилищу для достижения распределенной избыточности учитывают, например, требования конфиденциальности239.


Дартмутский семинар (Dartmouth workshop)  Дартмутский летний исследовательский проект по искусственному интеллекту  так назывался летний семинар 1956 года, который многие считают основополагающим событием в области искусственного интеллекта240.


Датамайнинг (Datamining)  это процесс обнаружения и интерпретации значимых закономерностей и структур в исходных данных, которые могут быть использованы для решения сложных бизнес-вопросов и высокоинтеллектуального прогнозирования241.


Даунсэмплинг (downsampling)  это уменьшение количества информации в функции для более эффективного обучения модели. Например, перед обучением модели распознавания изображений, субдискретизация изображений с высоким разрешением до формата с более низким разрешением; Обучение на непропорционально низком проценте чрезмерно представленных примеров классов, чтобы улучшить модель обучения на недопредставленных классах242.


Движок искусственного интеллекта (Artificial intelligence engine) (также AI engine, AIE)  это движок искусственного интеллекта, аппаратно-программное решение для повышения скорости и эффективности работы средств системы искусственного интеллекта.


Двоичное число (Binary number)  это число, записанное в двоичной системе счисления, в которой используются только нули и единицы. Пример: Десятичное число 7 в двоичной системе счисления: 111243.


Двоичный формат (Binary format)  это любой формат файла, в котором информация закодирована в каком-либо формате, отличном от стандартной схемы кодирования символов. Файл, записанный в двоичном формате, содержит информацию, которая не отображается в виде символов. Программное обеспечение, способное понимать конкретный метод кодирования информации в двоичном формате, должно использоваться для интерпретации информации в файле в двоичном формате. Двоичные форматы часто используются для хранения большего количества информации в меньшем объеме, чем это возможно в файле символьного формата. Их также можно быстрее искать и анализировать с помощью соответствующего программного обеспечения. Файл, записанный в двоичном формате, может хранить число «7» как двоичное число (а не как символ) всего в 3 битах (т.е. 111), но чаще используется 4 бита (т.е. 0111). Однако двоичные форматы обычно не переносимы. Файлы программного обеспечения записываются в двоичном формате. Примеры файлов с числовыми данными, распространяемых в двоичном формате, включают двоичные версии IBM файлов Центра исследований цен на ценные бумаги и Национального банка торговых данных Министерства торговли США на компакт-диске. Международный валютный фонд распространяет международную финансовую статистику в смешанном формате и двоичном (упакованно-десятичном) формате. SAS и SPSS хранят свои системные файлы в двоичном формате244.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3