Березин В. А. - Есть ли жизнь внутри черных дыр? стр 5.

Шрифт
Фон

Так выглядят уравнения Эйнштейна

Экспериментальные подтверждения Общей теории относительности

Какой бы красивой ни была теория, но критерием ее истинности все же остаются эксперименты и наблюдения. Чем же подтверждается Общая теория относительности?

Общая теория относительности сумела объяснить явление, которое до ее создания объяснить никак не удавалось. Это аномалия в движении планеты Меркурия. Планета движется по эллипсу, но не совсем. Точный эллипс был бы в ньютоновской теории при условии, что силу гравитации, действующую на планету, создает только одна масса. Но, кроме гравитационного поля Солнца имеются также поля других планет. Под влиянием этих полей орбита планеты немного отходит от точного эллипса. Это выглядит так, словно эллипс вращается. Астрономы тщательно учли влияние Солнца и других планет на движение Меркурия и обнаружили, что его орбита поворачивается быстрее, чем должна. Объяснения этому факту найти не удавалось. И только А. Эйнштейн нашел разгадку. Созданная им Общая теория относительности давала в точности тот дополнительный вклад в угол поворота орбиты, который требовался. А недавно была зарегистрирована даже прецессия орбиты звезды, вращающейся вокруг сверхмассивной черной дыры в центре нашей Галактики.


Вращение орбиты планеты


Также Общая теория относительности предсказала еще один эффект, который впоследствии был обнаружен. Это отклонение лучей света, проходящих вблизи Солнца или других массивных объектов. Гравитационное поле отклоняет свет и может его даже фокусировать, словно линза. Например, одна галактика может сфокусировать свет другой далекой галактики, находящейся с ней на одном луче зрения. Такую фокусировку часто называют «гравитационным линзированием». В теории Ньютона путем математических расчетов получается некоторый угол отклонения лучей. Такой же угол следует из теории, в которой учитывается гравитационное замедление времени, но не учитывается кривизна пространства. Такие теории разрабатывались до создания Общей теории относительности. Эйнштейн на основании Общей теории относительности предсказал в два раза большую величину угла отклонения света звезд Солнцем. Требовалось определить, кто прав. Арбитром выступила сама природа  ученые обратились непосредственно к ней.

При солнечных затмениях проводились наблюдения звезд вблизи края солнечного диска. Небесные координаты звезд сравнивались с положениями тех же самых звезд, но измеренными в то время, когда на небе эти звезды были далеко от Солнца. Тем самым, находились углы отклонения света. Эти наблюдения подтвердили справедливость Общей теории относительности и опровергли альтернативные теории, предсказывавшие половинный угол.

Принцип эквивалентности тоже проверен с высокой точностью. С погрешностью до одной стомиллионной в 1890 г. его подтвердил Этвеш в своем эксперименте с крутильными весами. А в опытах В. Б. Брагинского и его коллег, выполненных в Московском государственном университете, точность была доведена до одной тысячемиллиардной. Сейчас точность еще примерно на порядок выше.

Следующее предсказание Общей теории относительности состоит в том, что часы в сильном гравитационном поле идут медленнее, чем в более слабом поле. Отсюда, в частности, следует, что свет, излученный атомами вблизи источника гравитационного поля, будет наблюдаться (на большом расстоянии) с меньшей частотой, чем свет, излучаемый такими же атомами вдали от источников гравитации. Это эффект гравитационного красного смещения. Он действительно наблюдался для света Солнца и звезд. Похожий эффект для ядерных переходов зарегистрирован в земных условиях в эксперименте Паунда  Ребки. Данный эффект также подтвержден с помощью спутников, вращающихся вокруг Земли.

Есть еще ряд прямых и косвенных подтверждений Общей теории относительности, о которых мы не упомянули. Отметим лишь, что наблюдаемое космологическое расширение Вселенной является подтверждением космологических моделей, основанных на Общей теории относительности. Также чуть позже мы расскажем о черных дырах, сам факт существования которых уже не вызывает сомнения и дает подтверждение Общей теории относительности. Еще два эффекта, которые недавно подтвердили Общую теорию относительности  это гравитационные волны и «тень черной дыры». Но они заслуживают того, чтобы о них было рассказано подробнее в отдельных разделах.

Итак, опыт подтверждает Общую теорию относительности. Но значит ли это, что старая теория Ньютона не верна или ошибочна, так как правильной является теория Эйнштейна? Конечно же нет. Теория Ньютона правильна, но она должна рассматриваться только в области своей применимости. То есть, при достаточно малых скоростях и гравитационных полях. Малость определяется в каждом конкретном случае рассматриваемым явлением или точностью имеющихся измерительных приборов.

Гравитационные волны

В течение последних ста лет Общая теория относительности проверялась только в сравнительно слабых гравитационных полях. Но в 2015 г. были зарегистрированы гравитационные волны, с помощью которых удалось проверить Общую теорию относительности и в области сильных полей.

Что такое гравитационные волны? Искривленное пространство-время обладает свойством, напоминающим упругость. Если в каком-то участке пространство-время немного «пошевелить», то от этого места побегут волны искривления, отдаленно напоминающие волны на воде или волны упругости в натянутой нити. Эти волны называются гравитационными волнами.

«Пошевелить» пространство-время можно путем резких движений или колебаний массивных объектов, создающих, как мы помним, искривления пространства-времени. В частности, две черные дыры, которые образуют пару и обращаются по орбите друг вокруг друга, являются источником гравитационных волн. Такие пары черных дыр достаточно часто образуются в результате эволюции звезд. Сначала имелась пара обычных звезд, которые последовательно вспыхнули как сверхновые и превратились в черные дыры. Излучая гравитационные волны, двойная система черных дыр теряет энергию, и ее компоненты сближаются. Наиболее сильный гравитационный всплеск возникает в момент столкновения двух черных дыр, после чего они объединяются вместе и становятся одной черной дырой.


Двойная черная дыра генерирует гравитационные волны


В 2015 г. с помощью сложнейших лазерных интерферометров LIGO/Virgo физики сумели зарегистрировать гравитационные волны, генерируемые слияниями пар черных дыр в далеких галактиках. Массы этих черных дыр были примерно в 30 раз больше массы Солнца, поэтому они образовались, вероятно, при взрывах очень массивных звезд. Или же они могут быть первичными черными дырами, образовавшимися в ранней Вселенной. Гравитационные волны были достоверно зарегистрированы несколько раз. При этом оказалось, что в большинстве случаев никакой другой объект, кроме черной дыры, не может обеспечить наблюдавшуюся форму сигнала. Форма сигнала определяется быстрым движением двух черных дыр по орбите непосредственно перед слиянием и последующими колебаниями горизонта образующейся после слияния единой черной дыры. А слияния объектов с твердой поверхностью генерировали бы сигналы иной формы. И это тоже было подтверждено в 2017 г., когда был зарегистрирован гравитационно-волновой сигнал и от слияния двух нейтронных звезд. Строго говоря, в этом слиянии как минимум один объект точно является нейтронной звездой, а второй может быть нейтронной звездой или черной дырой. При слиянии двух черных дыр пространство-время возмущено сильно, поэтому наблюдение гравитационных волн от слияний черных дыр дало проверку Общей теории относительности в области сильных полей. К настоящему моменту зарегистрированы уже десятки всплесков гравитационных волн. Таким образом, удалось окончательно установить, что гравитационные волны действительно существуют.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3