Мы неосознанно помним сегодня о Броуне, потому что в своей знаковой работе о размножении орхидей (1833 год) он переименовал ареолу. Используя латинское слово, обозначающее ядро ореха, он обозначил ее как «ядро (nucleus) клетки, как ее можно было бы назвать»[40]. И новое название прижилось.
Ядерное распространение
Через несколько лет после открытия Броуна ядро было признано обязательным элементом практически всех животных и растительных клеток. Некоторые ядра относительно изящные, в то время как лимфоциты, наполняющие зобную железу (классический источник ДНК), практически полностью состоят из ядра, окруженного тонким ободком цитоплазмы. Большинство ядер имеют шарообразную или линзовидную форму, но лейкоциты, которые Мишер выделял из гноя, отличаются многолопастной системой, похожей на резиновую перчатку, наполненную водой.
Есть редкие исключения из правила «одна клетка одно ядро», к ним относятся красные клетки крови (эритроциты) млекопитающих, откуда ядро вываливается во время созревания в костном мозге. В отличие от них, эритроциты птиц и рептилий сохраняют свои ядра и, таким образом, поставляют нуклеин, что позволило студенту Гоппе-Зейлера Плосу подтвердить невероятное открытие Мишера.
К середине 1850-х годов было общепризнано, что клетки размножаются путем деления надвое и что ядро также разделяется и чудесным образом вновь появляется в каждой из двух дочерних клеток. Большинство биологов полагало, что ядро является необходимым для жизни клетки, потому что клетки, из которых в процессе эксперимента извлекали ядро, вскоре погибали. Другие, тем не менее, считали, что ядро всего лишь попутчик, которого увлекают за собой более важные компоненты клеточного механизма. Самой значимой фигурой антиядерного лагеря был Томас Гексли, президент Королевского общества и «Бульдог Дарвина», который дал знаменитый отпор отрицавшему эволюцию Сэмюэлу Уилберфорсу во время дискуссии в Оксфордском союзе. Гексли настаивал на том, что ядра (и даже клетки) были артефактами микроскопии и что странная желеобразная субстанция, извлеченная со дна Северного Атлантического океана в 1857 году, была революционной безъядерной формой жизни. У этого желе не было никакой микроструктуры, и оно абсолютно ничего не делало, но Гексли дал ему название Bathybius («жизнь из глубины») haeckelii[41] в честь Эрнста Геккеля, немецкого разностороннего ученого, пропагандировавшего собственные идеи, который в то время также не придавал ядру никакого значения. Гексли продолжал верить в Bathybius более 20 лет после того, как было доказано, что желе просто химический артефакт.
К тому времени непостоянный Геккель изменил свою точку зрения и присоединился к сторонникам ядра. Это произошло потому, что ядро вернулось домой и, несмотря на ужасную привычку исчезать как раз тогда, когда становится интересно, начало делиться своими секретами. А новые находки указывали в увлекательном направлении. В 1866 году Геккель написал[42], что «ядра обеспечивают передачу наследственных характеристик», как если бы это было совершенно очевидно все время.
Потребовалось еще 20 лет, чтобы подкрепить доказательствами сделанную Геккелем констатацию факта. Это удалось сделать благодаря прогрессу в оптике и гистологии изучении тканей под микроскопом. Прославленное увеличительное стекло Броуна развилось в составные микроскопы, которые мы знаем сегодня, с отдельными линзами в объективе (непосредственно над образцом) и окуляре. В результате получалось гораздо более четкое и яркое изображение, так что микроскоп можно было направить на живые клетки или очень тонкие полоски ткани, которые пропитывали парафином, чтобы сохранить внутреннюю структуру. Полоски были тонкими (стопка из 200 единиц достигала бы всего миллиметра в высоту) и прозрачными, что позволяло подкрашивать элементы клетки синтетическими красителями. Эти гистологические красители преобразили монохромный облик микроскопии. Они вступали в реакции с отдельными компонентами, такими как белки, жиры или нуклеиновые кислоты, и расцвечивали их красками, которые могли бы украсить палитру художника. К первым красителям относились метиловый зеленый, эозин (насыщенно-розовый, названный в честь древнегреческой богини утренней зари) и толуидиновый синий, который обозначает ядро богатым ультрамариновым оттенком. Фридрих Мишер мог бы стать первопроходцем в этой новой области гистохимии. В 1874 году он обнаружил, что прозрачный раствор нуклеина приобретает красивый голубо-зеленый цвет при добавлении метилового зеленого; но он не испытывал никакого желания «присоединиться к гильдии красильщиков»[43] и оставил это наблюдение, чтобы его заново открыл кто-нибудь другой.
К счастью, другие ученые были более заинтересованы новыми красителями и их способностью выявлять детали устройства клетки, которые ранее были невидимы. И вскоре из зерновидных внутренностей ядра Роберта Броуна начали появляться странные фигуры красивые, но сбивающие с толку.
Конфликт лояльности
В состоянии покоя, которое занимает свыше 99,99 % жизненного цикла большинства клеточных типов, ядро мало чем выдает себя под микроскопом. Оно сидит в клетке тихо и бесстрастно, словно игрок в покер; а затем ни с того ни с сего вовлекается в такую запутанную бурную деятельность, что даже самые зоркие микроскописты не могли договориться о том, что произошло. Ядро растворяется, оставляя на своем месте своеобразные меняющие форму элементы. Затем клетка удлиняется и два ядра появляются с противоположных концов. Наконец, вся система разрывается в середине, в результате чего появляются две дочерние клетки, у каждой из которых имеется целенькое ядро, которое выглядит точно так же, как первоначальное.
Деление клетки лежит в основе жизни, здоровья и восстановления организмов. Ткани и органы растут и расширяются, потому что клетки, из которых они состоят, размножаются путем деления надвое. Некоторые типы клеток, такие как определенные нервные клетки (нейроны) мозга, живут свои долгие жизни, не зная переживаний деления, но у большинства клеток более честолюбивые замыслы. Клетки кожи и внутренней оболочки кишечника[44] подвергаются сильному износу, поэтому им приходится чаще регенерировать самих себя, чтобы сохранять эти поверхности в целости. Даже для этих интенсивно обновляющихся тканей деление клетки редкое событие; например, оно занимает лишь последний час из трехдневного периода жизни клетки эпителия толстой кишки. Клетки делятся более часто в эмбрионе и при восстановлении тканей после повреждения ярким примером может служить новая лапка, которая вырастает у личинки тритона после неудачной встречи с биологом-экспериментатором.
Благодаря своей благоприятствующей анатомии некоторые виды чрезвычайно поспособствовали изучению деления клетки. Если посмотреть невооруженным глазом, лошадиная острица выглядит как 5-дюймовая невероятно подвижная макаронина; под микроскопом это ответ на мольбу биолога гермафродит с просвечивающими гонадами, где на одном образце можно проследить развитие икры и спермы. Личинки амфибий, таких как тритоны и саламандры, наделены большими удобными для микроскопистов клетками кожи, жабр и мочевого пузыря. А слюнные железы мух содержат необыкновенно большие хромосомы с таким изысканным рисунком, что мутации можно буквально увидеть.