Одним из важнейших результатов работы Гаюи стало понимание того, что минералы состоят из неких первичных строительных блоков, которые он называл la molécule intégrante[2], раз за разом повторяющихся в веществе. Минералы одного типа состоят из одинаковых строительных блоков, независимо от того, где в мире они образовались.
Несколько лет спустя открытие Гаюи поспособствовало формулированию еще более смелой идеи. Британский ученый Джон Дальтон предположил, что вся материя, а не только минералы состоит из неделимых и неразрушимых единиц, называемых атомами. Согласно этой идее, первичные строительные блоки Гаюи соответствуют группам из одного или нескольких атомов, тип и пространственное расположение которых определяет тип минерала.
Авторами концепции атомов часто считают древнегреческих философов Левкиппа и Демокрита, живших в V веке до нашей эры. Однако их идеи были сугубо философскими. Именно Дальтон превратил атомистическую гипотезу в проверяемую научную теорию.
На основе своего опыта изучения газов Дальтон пришел к выводу о том, что атомы имеют сферическую форму. Он также предположил, что разные типы атомов имеют разные размеры. Атомы слишком малы, чтобы увидеть их при огранке минералов, как и с использованием любых других технологий, существовавших в XIX веке. Понадобилось более столетия ожесточенных дебатов, а также разработка новых технологий и нового типа экспериментов, чтобы атомистическая гипотеза была окончательно признана.
И все же одного из самых важных открытий Гаюи не могли объяснить ни он сам, ни Дальтон, несмотря на все их достижения. Независимо от изучаемого минерала первичные строительные блоки, la molécule intégrante, оказывались всегда либо тетраэдрами, либо треугольными призмами, либо параллелепипедами более широкой категорией фигур, включающей в себя и ромбоэдр, обнаруженный Гаюи в самом начале. Чем объяснить подобную закономерность?
Поиски ответа на этот вопрос, продолжавшиеся много десятилетий, в конце концов привели к созданию новой важнейшей научной области, известной как кристаллография. Основанная на строгих математических принципах, кристаллография в итоге оказала огромное влияние на другие научные дисциплины, включая физику, химию, биологию и инженерию.
Законы кристаллографии оказались в силах объяснить все известные в то время формы вещества и предсказать множество их физических свойств, таких как твердость, поведение при нагревании и охлаждении, электропроводность и упругость. Успех кристаллографии в объяснении такого множества различных свойств вещества, относящихся к такому большому числу разных дисциплин, долгое время считался одним из величайших научных триумфов XIX века.
И все же в начале 1980-х годов именно эти знаменитые законы кристаллографии мы с моим студентом Довом Левином поставили под сомнение. Мы придумали, как сконструировать новые строительные блоки, которые можно складывать друг с другом таким способом, какой прежде считался невозможным. И именно наше открытие чего-то нового относительно того, что считалось хорошо известным фундаментальным научным принципом, и привлекло внимание Фейнмана во время моего доклада.
Чтобы дать возможность сполна оценить степень его удивления, я приведу краткое описание трех простых принципов, на которых зиждется кристаллография.
Первый принцип состоит в том, что все чистые вещества, такие как минералы, образуют кристаллы, если у атомов и молекул достаточно времени, чтобы выстроиться упорядоченно.
Второй принцип утверждает, что все кристаллы это периодически повторяющиеся конфигурации атомов, то есть внутри они целиком состоят из одинаковых элементарных строительных блоков Гаюи: одна группа атомов периодически повторяется в каждом направлении с равными интервалами.
Третий принцип гласит, что любую периодическую конфигурацию атомов можно классифицировать в соответствии с ее симметриями и существует лишь конечное число возможных симметрий.
Последний из этих трех принципов наименее очевиден, но его легко проиллюстрировать на примере обычной плитки для пола. Представьте, что вы хотите покрыть пол периодически расположенными плитками одинаковой формы, как показано на следующей странице. Математики называют получающиеся узоры периодическими замощениями. Плитки здесь это двумерные аналоги трехмерных элементарных строительных блоков Гаюи, поскольку весь узор складывается из повторяющихся элементов одного и того же вида. Периодические замощения постоянно встречаются у нас на кухнях и террасах, в прихожих и ванных. И эти узоры часто содержат следующие основные фигуры: прямоугольники, параллелограммы, треугольники, квадраты и шестиугольники.
А какие еще возможны простые формы? Задумайтесь над этим. Какие еще элементарные формы плитки вы могли бы использовать у себя на полу? Сгодятся ли, например, правильные пятиугольники фигуры, имеющие пять сторон равной длины с равными углами между ними?
Вероятно, вы будете удивлены. Согласно третьему принципу кристаллографии, ответ будет отрицательным. Категорически отрицательным. Пятиугольник не годится. И вообще ни одна другая форма не подойдет. Любой двумерный периодический узор соответствует одному из пяти перечисленных выше.
Вам может встретиться замощенный плиткой пол, который покажется исключением из этого правила. Но это лишь уловка. Если вы присмотритесь внимательнее, в замощении всегда оказывается спрятан один из тех самых пяти узоров. Например, можно создать более сложно выглядящий узор, заменив все прямые линии одинаковыми кривыми. Также можно разделить все плитки (например, квадратные по диагонали), а затем вернуть их обратно в замощение, чтобы получилась другая геометрическая форма. А можно выбрать картинку или узор и вставить его в центр каждой плитки. Однако, с точки зрения кристаллографа, все это не изменит того факта, что общая структура отвечает одному из пяти перечисленных выше вариантов. Других фундаментальных узоров не существует.
Если вы попросите своего подрядчика покрыть пол в душевой правильными пятиугольниками, то на деле вы получите большие проблемы с гидроизоляцией. Как бы ни старался плиточник подогнать пятиугольники друг к другу, между ними все равно будут оставаться щели (см. рисунок ниже). Много щелей! То же самое будет, если вы попытаетесь использовать правильные семиугольники, восьмиугольники или девятиугольники. Этот список запрещенных форм можно продолжать бесконечно.
Пять периодических узоров это ключ к пониманию фундаментальной структуры вещества. Ученые также классифицируют их исходя из вращательной симметрии весьма сложно звучащее понятие, описывающее достаточно очевидную идею. Вращательная симметрия определяется тем, сколько раз в процессе поворота объекта на 360° он совпадает со своим видом в исходном положении.
Рассмотрим, например, узор замощения квадратными плитками на левом рисунке со следующей страницы. Допустим, вы закрыли глаза, а ваш друг тем временем повернул это квадратное замощение на 45°, как показано на среднем рисунке. Когда вы взглянете на него снова, то сразу заметите, что оно выглядит не так, как первоначально, а ориентировано в другом направлении. Так что этот поворот на 45° не считается симметрией квадрата.
Однако, если при новой попытке ваш друг повернет замощение на 90° (правый рисунок), вы не сможете заметить никаких изменений. Плитки будут выглядеть в точности так же, как и первоначально. Этот поворот на 90° рассматривается как вращательная симметрия. На самом деле 90° это минимальный угол поворота, являющийся симметрией для узора из квадратов. Любой поворот квадрата менее чем на 90° меняет его видимую ориентацию.