Университет Джона Хопкинса на своем сайте в конце 2020 г. в разделе «Нейроинженерия» дает очень емкое определение этого научного раздела нейронаук. По их мнению, нейроинженерия включает фундаментальные, экспериментальные, вычислительные, теоретические и количественные исследования, направленные на понимание и улучшение функции мозга при здоровье и болезнях во многих пространственно-временных масштабах. Исследования в нейроинженерии, по мнению специалистов Университета Джона Хопкинса, внедряют новые технологии для оценки и регулирования функции нервной системы для улучшения скрининга, диагностики, прогноза, реабилитации и восстановления. Специалисты из Центра нейроинженерии Университета Джона Хопкинса ключевые направления исследований в области нейроинженерии определили следующим образом:
NeuroЕxperiment (нейроэксперименты) направление разрабатывает и использует экспериментальные методы измерения и управления когнитивными функциями мозга. Эти усилия включают новые методы в системной нейробиологии и картировании мозга;
NeuroTech (нейротехнологии) направление разрабатывает и внедряет инструменты для распознавания и управления мозгом и поведением человека, включая нейроморфную инженерию, передовую оптическую визуализацию, интеллектуальные агенты, протезы и роботов;
NeuroData (нейроданные) направление создает возможности для науки о мозге с интенсивным использованием данных, интегрируя нейроинформатику, вычислительную нейробиологию и системы машинного обучения для анализа и моделирования наборов данных неврологии любого размера;
NeuroDiscovery (нейрооткрытия) открывают основные принципы нейронного и коннектомного кодирования, изучают внутренние системы координат мозга и расшифровывают беспрецедентную способность мозга понимать сложные явления;
NeuroHealth (нейроздоровье) улучшает, восстанавливает и увеличивает нормальную и нарушенную нервную функцию, уделяет особое внимание диагностике, прогнозу и лечению расстройств нервной системы.
Как мы уже отмечали во введении, как самостоятельная научная дисциплина нейроинженерия существует сравнительно недавно, а имеющаяся информация и исследования носят весьма ограниченный характер. Хотя ситуация быстро меняется, и то, что вчера воспринималось как научная фантастика в нейроинженерии, сегодня является рутиной и реальностью современных нейротехнологий. Первые журналы, специализирующиеся на этом направлении (такие, как The Journal of Neural Engineering и The Journal of NeuroEngineering and Rehabilitation), появились в 2004 г. Международные конференции при поддержке IEEE начали проходить с 2003 г. под международным брендом Conference on Neural Engineering.
Существует особая точка зрения, что нейроинженерия это одна из дисциплин современной технической инженерии, основанная на таких научных ответвлениях, как нейрофизиология, клиническая неврология, электротехника, и включающая элементы таких научных дисциплин, как робототехника, кибернетика, компьютерная инженерия, материаловедение и нанотехнологии. Цели нейроинженерии направлены на восстановление и увеличение функций человека через прямое взаимодействие нервной системы с различными электронными и механическими устройствами. Очевидно, что многие современные исследования ориентированы на понимание кодирования и обработки информации в сенсорных и моторных системах, количественной обработки информации, оценки того, как она меняется в патологических состояниях и как этим можно управлять через взаимодействия со внешними искусственными устройствами (Рывкина, 2010; Nuyujukian et al., 2018; Hosman et al., 2019).
Другое понимание термина нейроинженерия это сугубо медицинское представление этого нового направления в нейронауках. Под клинической нейроинженерией в этом контексте понимаются способы и методы нейровосстановления и нейрореставрации морфологического субстрата головного и спинного мозга человека, осуществляемые во время нейрохирургических операций по тканевой инженерии и малоинвазивных интервенционных вмешательств биоинженерии поврежденной нервной ткани (Honnung et al., 2017; Брюховецкий, Хотимченко, 2018). Через восстановление анатомической и физиологической структуры поврежденного мозга с использованием как живых, так и неживых систем обеспечивается восстановление утерянной функции головного и спинного мозга человека. Эта область клинической нейроинженерии связана с общими тенденциями технологического развития в медицинской науке и обществе, а также с мировым научно-техническим прогрессом и появлением новых технологий и технических устройств нейроуправления и нейрореставрации. Однако правильнее не отделять биоинженерию от технических устройств, сопряженных с мозгом человека. По мнению О. Рывкиной (2017), нейроинженерия является междисциплинарной наукой, которая использует для своих исследований методику и разработки, созданные в клинической и экспериментальной неврологии. Кроме того, она включает элементы кибернетики, компьютерной инженерии, а также материаловедения и нанотехнологий и использует лабораторные приборы, применяемые в этих областях. Нейроинженерия это новая дисциплина, в которой технические методы и лабораторное оборудование используются для исследования центральной и периферической нервных систем, их функций и управления их реакциями. Чтобы понять суть нервного процесса и научиться восстанавливать утраченную функцию, наука должна научиться фиксировать деятельность нервной системы и стимулировать ее. Современная комплектация лабораторий делает это вполне возможным. Так, микроэлектронные матричные записывающие устройства (MEA) способны одновременно зафиксировать активность множества нейронов, а это дает ученым возможность понять протоколы работы распределенной нейронной сети.
Перед нейроинженерией стоит задача понять фундаментальные механизмы и тонкости клеточной сигнализации и синаптической передачи, что позволит разработать технологии, которые копируют эти механизмы с помощью искусственных устройств и соединяют их с нервной системой на клеточном уровне. Новейшее оборудование для лабораторий позволяет приступить к созданию точных, информативных и биосовместимых нейральных интерфейсов. В последнее время оснащение лабораторий нейроинженерии пополнилось электродами, которые сделаны не из металла, а из углеродных нанотрубок, ориентированных вертикально (VACNF). Углеродные нанотрубки представляют собой электрохимически активные структуры, которые можно объединить в параллельные матрицы с помощью обычных инструментов, основываясь на методах микроинженерии. В отличие от стандартных плоских матриц, нанотрубки способны обеспечивать новые, неплоскостные и высокодифференцированные объемные 3D-структуры, дающие уникальные возможности исследования процессов как вне, так и внутри клетки.
Под термином «нейробиоинженерия» в конце прошлого века сначала понимали исключительно нейроанатомо-морфологические реконструктивные подходы к восстановлению поврежденного мозга нейрохирургическими методами. Затем к биоинженерии стали относить различные имплантации шунтов или портов в желудочковую систему мозга человека. В результате этих несложных операций удавалось восстановить нормальную функцию ликвородинамики головного мозга, осуществлять нормализацию внутричерепного давления, предотвратить возникновение внутренней и внешней гидроцефалии и профилактировать атрофии нервной ткани коры головного мозга. То есть нейробиоинженерия предполагала набор методологических инструментов и медицинских методик по имплантации различных биополимерных устройств в мозг человека в объеме новаторской имплантологии в нейрохирургии. Их установка (имплантация) в головной мозг обеспечивала восстановление нарушенных функций и предотвращение дальнейшего повреждения нервной ткани головного и спинного мозга исключительно нейрохирургическим путем, т.е. с использованием известных или нестандартных реконструктивно-восстановительных нейрохирургических операций. Эти операции предполагали, например, транспозицию (перенос на расстояние) под кожей пациента (животного) собственного сальника на сосудистых связях из брюшной полости к аваскуляризированному (плохо кровоснабжаемому сосудистому) участку поврежденного спинного или головного мозга самого пациента для его реваскуляризации (сосудистого обеспечения) и восстановления нарушенного кровообращения и микроциркуляции в нем. Также под нейробиоинжененерией понимались операции по трансплантации донорского участка нервной ткани или трансплантации различных типов клеток (аутологичных, аллогенных фетальных или ксеногенных) и тканей нервной системы в область повреждения головного и спинного мозга животных и человека. Так, наша научная группа занималась тем, что мы активно моделировали в эксперименте на телятах пересадку куска спинного мозга на сосудистых связях от одного животного донора другому теленку реципиенту с использованием операционного микроскопа, микрохирургической техники, микроинструментария и клеточных суспензий (Брюховецкий, 2003, 2010). Исследователи и врачи-экспериментаторы широко использовали разные типы клеточных суспензий для внутритканевого клеточного «обкалывания» трансплантатов донорской нервной ткани на сосудистых связях для повышения их приживляемости и восстановления синапсогенеза в поврежденной центральной нервной системе (ЦНС) и периферической нервной системе (ПНС) (Брюховецкий, 2003, 2010; Брюховецкий, Хотимченко, 2018). Военные врачи в России моделировали на крысах и собаках боевую травму мозга и пытались приживлять в зоны огнестрельного и минно-взрывного повреждения мозга куски гипоталамо-гипофизарного комплекса другого животного и человека (Брюховецкий, 2003). Подобные операции проводились и для целей андрологии, и для восстановления сексуальной дисфункции у человека при тяжелых эндокринных заболеваниях. Нейрохирурги различных учреждений г. Москвы и Санкт-Петербурга широко проводили стереотаксические операции по трансплантации фетальной ткани эмбрионов человека в различные участки головного мозга животных с экспериментальной травмой головного и спинного мозга, у больных эпилепсией и раненых с боевой минно-взрывной и огнестрельной травмой (Брюховецкий и др., 1989). Широко применялась нейротрансплантация при болезни Паркинсона в рамках европейской программы NECTAR в ГУ «НИИ нейрохирургии им. Н. Н. Бурденко» РАМН. Также подобные работы по нейробиоинженерии широко проводились на базе НМИЦ трансплантологии и искусственных органов Минздрава России и Российского университета дружбы народов им. Патриса Лумумбы в интересах Министерства обороны Российской Федерации под научным руководством акад. РАН и РАМН, проф., д.м. н. В.И. Шумакова.