Подсчитано, что уже к моменту пролета «Вояджера-2» у Нептуна на Землю было передано около 5 трлн бит научных данных. Но это бесстрастные числа, а по сути именно «Пионеры» и «Вояджеры» открыли нам внешние планеты Солнечной системы. На потрясающих воображение снимках мы увидели новые, неизвестные миры. Многие загадки планет-гигантов и их спутников будоражат умы ученых и по сей день.
Все четыре КА в результате встреч с планетами развили скорости, достаточные для того, чтобы навсегда покинуть Солнечную систему. «Вояджер-1» является лидером этого парада. 6 августа 2020 г. он ушел от Солнца на 150 астрономических единиц, то есть оказался от него в 150 раз дальше, чем Земля. Это самый далекий космический аппарат, когда-либо запущенный в космос человеком (см. таблицу 1), и конкурентов ему, по крайней мере в ближайшие десятилетия, не предвидится.
Оба «Вояджера» уже вышли за пределы той области околосолнечного пространства, где доминирует истекающий от Солнца поток вещества, проникли в межзвездную среду и регулярно сообщают нам сведения о ней. Руководители полета надеются, что вплоть до 50-летней годовщины запуска аппараты все еще будут передавать научную информацию.
Глава 1
«Пионеры» Юпитера
Гравитационный маневр ключ к Солнечной системе
Главной идеей при создании «Пионеров» и «Вояджеров» было использование гравитационного маневра в поле тяготения одной планеты с набором скорости для полета к другой. Если бы аппараты летели по «классическим» полуэллипсам Вальтера Гоманна, описанным им в 1925 г., то перелет до Нептуна, например, занял бы почти 31 год вместо 12, не говоря уже о том, что одна станция смогла бы исследовать лишь одну планету.
Вся история космонавтики это история достижения все более высоких скоростей. Спутник на низкой околоземной орбите высотой 200 км имеет скорость 7790 м/с. Чтобы долететь до Луны, нужно увеличить ее как минимум до 10 920 м/с. Если добавить еще чуть-чуть какие-то 100 м/с, то полная энергия относительно Земли станет положительной, а значит, ваш космический аппарат уйдет в бесконечность по гиперболе и не вернется.
Но всякая прибавка скорости в космонавтике оплачивается расходом топлива в соответствии с формулой Циолковского. Когда стартовали «Пионеры» и «Вояджеры», высокоэффективные электроракетные двигатели только создавались и не было опыта длительного разгона с характерной для них малой тягой, обретенного в самом конце XX в. В 1970-е гг. можно было рассчитывать лишь на традиционные жидкостные (ЖРД) или твердотопливные (РДТТ) ракетные двигатели.
Ракета «Союз» выводила на низкую орбиту КА массой около 7000 кг. «Молния» тот же «Союз» с четвертой ступенью отправляла к Луне до 1600 кг при стартовой массе 305 т. На этом примере можно увидеть и цену выхода на орбиту, и плату за добавку в 3100 м/с, от скорости спутника до скорости освобождения.
Достижение планет требует намного бóльших скоростей.
Земля обращается вокруг Солнца со средней скоростью 29,78 км/с. Среднее расстояние до светила называется астрономической единицей (а.е.), которая в привычных нам единицах равна 149,6 млн км. Более строгое описание гласит, что Земля обращается по эллипсу, в одном из двух фокусов которого находится Солнце, и что одна а.е. это большая полуось ее орбиты[2]. Однако этот эллипс довольно близок к окружности, и для оценочных расчетов различием между ними можно пренебречь.
Рассмотрим абстрактную задачу перелета от Земли к Нептуну. Для простоты будем считать орбиту Нептуна круговой с радиусом 30 а.е. и лежащей в той же плоскости, что и земная орбита. (Эта плоскость называется также плоскостью эклиптики она пересекает небесную сферу по линии видимого годового движения Солнца.) Можно доказать, что среди всех возможных траекторий перелета минимальную скорость отправления имеет половинка эллипса, касающегося земной орбиты в своей ближайшей к Солнцу точке в перигелии и орбиты Нептуна в самой далекой точке в афелии. Простые формулы небесной механики позволяют вычислить скорость в перигелии, необходимую для удаления на 30 а.е., это 41,43 км/с. Это значит, что к имеющейся средней орбитальной скорости Земли надо добавить еще 11,65 км/с. Естественно, в правильном направлении в том же, в котором летит наша планета. Если две скорости имеют различные направления, нужно будет выполнить векторное сложение, осознавая при этом, что сумма окажется меньше ожидаемой. И естественно, нужно стартовать в совершенно определенную дату иначе после 30,6 года пути окажется, что Нептун находится не там, куда мы прилетели, а в абсолютно иной точке своей орбиты.
Величина 11,65 км/с ужасает, тем более что это не отлетная, а остаточная скорость КА уже после того, как он преодолел притяжение Земли и ушел от нее «на бесконечность». На самом деле не все так страшно. Нам не потребуется добавлять к типичной скорости освобождения 11,02 км/с еще столько же и даже больше.
Из закона сохранения энергии следует, что, если из квадрата начальной скорости у Земли вычесть квадрат скорости освобождения на этой же высоте, получится квадрат остаточной скорости объекта. (В баллистических расчетах указанную величину называют характеристической энергией и обозначают символом C
3
Вот почему для нашего условного гоманновского перелета к Нептуну достаточно уйти с низкой орбиты в правильный момент и в правильном направлении со скоростью 16,04 км/с, которая «всего» на 5,02 км/с выше скорости освобождения. И тогда не исключено, что через 30,6 года КА будет еще жив и что-нибудь сообщит. Конечно, можно немного распрямить траекторию и сократить время перелета но за счет увеличения отлетной скорости, которая, конечно, меньше той, что мы вообразили, но все же очень велика.
За всю историю космонавтики только один раз была реализована отлетная скорость выше рассчитанной нами 19 января 2006 г. при отправке КА «Новые горизонты» к Плутону. Получив начальную геоцентрическую скорость 16,21 км/с, этот аппарат достиг цели после 9,5 лет полета. «Вояджер-2» отправился в путь, имея лишь 15,20 км/с, и все же за 12 лет добрался до Нептуна. Согласитесь, 9,5 или 12 лет это намного лучше, чем 31 год. Волшебное средство сокращения продолжительности межпланетного полета и называется гравитационным (пертурбационным) маневром.
Зададим себе такой вопрос: что значит «уйти на бесконечность» после старта с Земли? Он имеет смысл для ограниченной задачи трех тел двух центров притяжения, Солнца и Земли, и движущегося под их действием объекта. В первом приближении можно говорить о пересечении некой границы, до которой мы еще должны рассматривать гиперболическое движение КА относительно родной планеты, пусть и возмущаемое Солнцем, а после уже имеем право считать его спутником Солнца, хотя и испытывающим остаточное возмущение Земли. Эта граница имеет форму, близкую к сфере радиусом 1 млн км, которая называется сферой действия Земли. Так как Юпитер намного массивнее, его сфера действия обширнее, ее радиус 55 млн км.
Допустим, мы летим от Земли на межпланетном корабле по орбите с афелием около 9 а.е., пересекающей орбиту Юпитера на расстоянии 5,2 а.е. от Солнца. Более того, мы выбрали траекторию так, что пройдем вблизи Юпитера, но все же не попадем в него. (Не пытайтесь проделать это в реальности там очень мощная радиация!) Чтобы понять в первом приближении, что из этого получится, разделим наш путь на три части: до входа в сферу действия планеты, внутри этой сферы и после выхода из нее. Снаружи мы считаем единственным притягивающим центром Солнце, а внутри только Юпитер.