Павлов В. А. - Стрессовые факторы современной цивилизации и возможные механизмы профилактики адаптивных нарушений стр 3.

Шрифт
Фон

Наиболее исследованным мостом, соединяющим все эти центры в мозге, является мозолистое тело, которое служит системой проводников между нейронами правого и левого полушария. Известно, что оно подвергается существенным изменениям, как наследственным, так и приобретенным в процессе жизни. Оно имеет передние, задние и срединные отделы, которые могут подвергаться самым разнообразным изменениям. Мозолистое тело, также, как и глия, окружающая нейроны содержит большое количество соединительной ткани, поэтому явления ДСТ непосредственно затрагивают эти образования мозга и влияют на координированность мозговых центров.

Люди и целые народы, живущие в условиях цивилизации, на протяжении долгих лет, не испытывающие потребности в сверхусилиях всей своей сущности ради будущего своего народа, утрачивают такие способности. При ослаблении высших центров мозга (и особенно их взаимодействия) начинает функционально преобладать наиболее древний и физиологически устойчивый центр мозга  лимбическая система, ибо она связана с гомеостазом и поэтому сохраняет свою функциональную активность в максимальной степени. Такие люди начинают чувствовать друг друга и стремиться туда, где хорошо их телу и, соответственно, гомеостазу.

Помимо взаимоотношений центров мозга в совершенствовании адаптивных механизмов, большое значение также имеют особенности адаптивных механизмов на гормонально-метаболическом уровне. Но тем не менее механизмы, приводящие к формированию ДСТ и ДС во многом не ясны (Семинович А. В. 2010,2012).

На основании наших многолетних исследований на морских свинках и крысах, а также на спортсменах разных видов спорта и уровня мастерства, было установлено, что в адаптивных механизмах защиты организма имеют большое значение особенности строения и обмена соединительной ткани (Павлов В. А.1914,1918,1919,2000,2008,2011), и особенностей обмена родоначальников живой материи  аминокислот, связанных с обменом соединительной ткани (СТ).

У морских свинок соединительная ткань тонковолокнистая и рыхлая, а у крыс  грубоволокнистая и плотная, что хорошо видно при окрашивании тканей на коллаген. При этом объем соединительной ткани у морских свинок ничуть не меньше, чем у крыс. Соединительная ткань имеет важнейшее значение в механизмах детоксикации и выведения из организма токсичных веществ, и одновременно является своеобразным метаболическим ресурсом для нейроэндокринной системы (аминокислоты, углеводы, липиды, витамины, минеральные вещества и т. д.). Имея существенную разницу по строению соединительной ткани морские свинки и крысы имеют совершено различную устойчивость ко многим факторам воздействия со стороны внешней среды.

Так крысы высокоустойчивы к заражению большинством болезнетворных микробов, токсическому воздействию разных веществ, перепадам температур и другим экстремальным факторам. Морские же свинки высокочувствительны к этим факторам и быстро погибают при их воздействии. Но морские свинки высокоустойчивы к мутагенам и канцерогенам, то есть веществам, вызывающим генетические мутации и злокачественные опухоли. По нашим данным это связано с тем, что морские свинки располагают высокоактивной системой глутатиона (это трипептид, состоящий из трех аминокислот  глутаминовой, глицина и цистеина, и способный интенсивно окисляться и восстанавливаться, имеет решающее значение в защите ядерного аппарата клетки от мутагенов и канцерогенов), подпитываемой ресурсами соединительной ткани. У крыс этого нет и на них легко моделируется как мутагенез, так и канцерогенез, несмотря на их устойчивость к мощным повреждающим факторам за счет из мощной печени и грубоволокнистой соединительной ткани.

Такая разница может быть связана с тем, что морские свинки, проживая на островах недалеко от Южной Америки, либо получали с пищей избыток аскорбиновой кислоты, либо подвергались повышенному воздействию радиации (глутатион и другие серосодержащие аминокислоты защищают организм от ионизирующего излучения), либо получали с пищей то, чего нет в других районах Земли и что требует больших количеств глутатиона и серосодержащих аминокислот для обезвреживания, либо сочетание всех этих факторов. Но факт остается фактом, морские свинки  единственные экспериментальные животные, не способные синтезировать аскорбиновую кислоту и производят большое количество глутатиона в тканях, заменяющих ее. В этом смысле они близки к человеку. Морские свинки, так же как и человек, и некоторые приматы не способны синтезировать аскорбиновую кислоту (АК) и полностью переориентированы на доминирование системы глутатиона в защитных механизмах. Ранее мы отмечали, что отказ предшественников человека от синтеза АК связан с мобилизацией ресурсов соединительной ткани для все более увеличивающегося мозга, с этим же связана меньшая чувствительность тканей к глюкокортикоидам, чем у большинства животных, особенно печени, утрата некоторых особо устойчивых к утомлению групп мышц (Павлов В. А. 2008, 2011,2012,2013,2014,2017). В общем многих адаптивных механизмов характерных для животных в дикой природе, для увеличения и усиления лишь одного адаптивного органа и связанных с ним механизмов адаптации мозга.

Крысы же, являясь своеобразным биологическим реликтом (первые млекопитающие были похожи на крыс), и проживая в загрязненной среде и подвергаясь разнообразным неблагоприятным воздействиям её, чтобы выжить, сохранили способность противостоять многочисленным отрицательным факторам, если нужно быстро мутировать. Но при этом они вынуждены пожертвовать устойчивостью к мутагенам ядерного аппарата. Поэтому у них и не выражена глутатионовая защита.

Исследуя особенности метаболического участия мозга и нервной ткани, а также печени (как два наиболее массивных паренхиматозных органа  по 2% от массы тела человека), нами было установлено, что наибольшее значение головной мозг, как участник адаптивных метаболических процессов имеет в первые годы жизни ребенка. во внутриутробном периоде жизни мозг плода вместе с матерью принимает участие в регуляции собственного метаболизма, во время родов и в первые месяцы жизни в мозге младенца образуются вещества, защищающие мозг от повреждений, гипоксии и других неблагоприятных факторов (таурин, цистеиновая кислота, глутатион и др.). по мере роста и развития ребенка, роль метаболических и интуитивных механизмов адаптации с участием мозга утрачиваются, равно как утрачиваются ненужные на определенном этапе онтогенеза структуры. имеются данные, что до 7 лет в крови ребенка повышено содержание метаболитов СТ (и появление некоторых из них в моче) необходимых для интенсивных обменных процессов в мозге- пролин, оксипролин, глутаминовая кислота глицингликозаминогликаны, серосодержащие аминокислоты и ряд других метаболитов. То есть сохраняется определенная мобильность СТ как ресурса нервной ткани и мозга.

С возрастом интенсивность обмена в мозге снижается, как и его роль как поставщика метаболитов для адаптивных механизмов организма и возрастает его роль как нервного управляющего центра. Одновременно меняется и роль соединительной ткани  из метаболического ресурса мозга она превращается в самостоятельную структуру с собственными функциями. При этом в метаболизме все большее значение начинает приобретать печень (липопротеиды, иммунные белки, системы детоксикации еще много чего свойственное печени как «биохимической лаборатории» организма), координирующая функции важнейших адаптивных систем организма.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3